Formulir Kontak

Name

Email *

Message *

Showing posts with label Science. Show all posts
Showing posts with label Science. Show all posts

Sunday, December 30, 2012

Penyebab Terjadinya Petir dan Halilintar?

Petir / halilintar. Image credit: google
Pertanyaan:
Bagaimana proses terjadinya petir yang disertai kilat atau halilintar itu?

Jawaban:
  1. pertama-tama, awan masih dalam kondisi netral alias jumlah proton dan nerutron sama. terus, pas hujan badai, terjadi gesekan antara awan dan udara dan jadilah awan bermuatan listrik alias neutronnya lebih banyak daripada proton. kalo awan lewat gedung yang tinggi, elektron awan akan menarik proton ke puncak gedung. karena perbedaan jenis muatan awan dengan puncak gedung menyebabkan medan listrik. apabila muatan pada awan bertambah, gaya elektrostatis akan memaksa muatan negatif meloncat secara tiba-tiba dari dasar awan ke puncak gedung yang disertai dengan bunga api listrik. nah, gitulah caranya petir nyambar gedung. dari cerita diatas, berarti pas hujan, awan yang bergesekan dengan udara dan menjadi bermuatan listrik(elektron lebih banyak dari proton) sudah menyiap-nyiaokan petirnya kalo ketemu sama benda yang tinggi-tinggi. makanya pas hujan orang juga bilang jangan teduh ketempat yang tinggi.proton : partikel yang bermuatan positif, elektron : partikel yang bermuatan negatif.
  2. Proses Terjadinya:
    Petir terjadi akibat perpindahan muatan negatif (elektron) menuju ke muatan positif (proton). Para ilmuwan menduga lompatan bunga api listriknya sendiri terjadi, ada beberapa tahapan yang biasanya dilalui. Pertama adalah pemampatan muatan listrik pada awan bersangkutan. Umumnya, akan menumpuk di bagian paling atas awan adalah listrik muatan negatif; di bagian tengah adalah listrik bermuatan positif; sementara di bagian dasar adalah muatan negatif yang berbaur dengan muatan positif. Pada bagian bawah inilah petir biasa berlontaran.


    Petir dapat terjadi antara:
    Awan denqan awan
    Dalam awan itu sendiri
    Awan ke udara
    Awan denqan tanah (bumi)

    Besar medan listrik minimal yang memungkinkan terpicunya petir ini adalah sekitar 1.000.000 volt per meter.

Monday, December 24, 2012

Nautilus-X, Pesawat Luar Angkasa NASA Dilengkapi Mesin Gravitasi

Nautilus-X. Image credit: PhysOrg.com
Nautilus-X. Image credit: PhysOrg.com
Nautilus-X. Image credit: PhysOrg.com
Nautilus-X. Image credit: PhysOrg.com
Non-Atmospheric Universal Transport Intended for Lengthy United States Exploration atau yang disingkat dengan Nautilus-X, merupakan sebuah wahana pesawat luar angkasa NASA yang ditujukan untuk misi jangka panjang ke Bulan atau planet Mars. Pesawat ini dirancang dan diusulkan oleh Bigelow Aerospace dan mampu menampung 6 orang awak pesawat.

Menurut informasi NASA, pesawat ini merupakan pesawat yang dibuat dengan biaya yang relatif murah yaitu sekitar $3,5 miliar dan membutuhkan waktu pengerjaan selama 64 bulan.

Wahana ini juga sekaligus sebagai stasiun transit jika NASA ingin melakukan eksplorasi ke tata surya jauh. Mirip seperti ISS bedanya ISS bukanlah pesawat luar angkasa mandiri. Pesawat Nautilus-X didesain dengan desain modular dilengkapi dengan port docking untuk kapsul seperti Orion atau kapsul luar angkasa lainnya. Selain itu ada berbagai macam perlengkapan lainnya seperti solar array, tangki penampung air dan hidrogen yang dapat mengurangi bahaya radiasi kosmik bagi kru astronot, sistem komunikasi, sistem propulsi, cincin sentrifugal sebagai mesin untuk menciptakan gravitasi parsial dan sebagainya.

Untuk menguji pengaruh dan efek cincin sentrifugal terhadap manusia, maka mesin tersebut akan terlebih dahulu diuji coba di ISS.

Namun sampai saat ini Nautilus-X masih sekedar konsep dan peluncurannya pun masih belum diketahui dengan pasti. (WKP, PHS, Adi Saputro/ www.astronomi.us)

Tuesday, December 4, 2012

Peneliti NASA Temukan Mikroba Kuno di Danau Antartika

Danau Vida di Antartika. Klik gambar untuk memperbesar. Image credit: nationalgeographic.com
Peneliti NASA baru-baru ini menemukan sekumpulan mikroba kuno yang mendiami sebuah danau di Antartika. Danau Vida di lembah McMurdo Antartika menjadi tempat penemuan mikroba kuno pada kedalaman 65 kaki. Danau tersebut merupakan salah satu tempat tergelap di Bumi yang tidak tertembus sinar Matahari dikarenakan permukaannya yang beku dan memiliki tingkat keasinan yang sangat tinggi yaitu 6 kali lebih asin dari air laut dan juga sangat dingin sehingga danau tersebut benar-benar ekstrim untuk mampu mendukung adanya kehidupan termasuk mikroba ini. Danau Vida juga dikenal sebagai tempat yang tidak memiliki oksigen dan memiliki oksida nitrous tertinggi di Bumi.

"Studi ini memberikan gambaran kepada kita ke salah satu ekosistem paling unik di Bumi," ucap Alison Murray, ahli ekologi mikroba dari Desert Research Institute (DRI). "Pengetahuan kita tentang proses geokimia dan mikroba dalam lingkungan es dalam dunia yang gelap khususnya pada suhu di bawah nol masih banyak yang belum diketahui sampai sekarang. Studi ini dapat memperluas pemahaman kita tentang jenis kehidupan yang dapat bertahan hidup dalam cryecosystem terisolasi dan bagaimana strategi yang berbeda bisa ada dalam lingkungan yang penuh tantangan seperti itu," tambahnya.

Dari analisis geokimia didapatkan hasil bahwa reaksi kimia antara air asin dan zat besi pada sedimen di danau tersebut menghasilkan oksida nitrous dan molekul hidrogen dan molekul hidrogen tersebut dapat memberikan energi pada mikroba kuno tersebut untuk tetap bertahan hidup. (NS, Adi Saputro/ www.astronomi.us)

Sunday, July 8, 2012

Video: Ilustrasi Penemuan Partikel Tuhan di Particle Accelerator CERN

Particle Accelerator CERN. Image credit: dailymail.co.uk
Pada tulisan sebelumnya telah diungkapkan bahwa partikel Tuhan, Higgs Boson merupakan kunci untuk memahami proses terbentuknya alam semesta dan apa yang ada di dalamnya. Para ahli fisika di CERN, membuat Particle Accelerator untuk membenturkan proton dengan sesamanya untuk mendapatkan partikel Tuhan.

Di dalam Particle Accelerator, proton dibenturkan dalam kecepatan yang hampir sama dengan kecepatan cahaya dan dalam setiap 1 triliun kali benturan, hanya akan didapat 1 kemungkinan adanya partikel Tuhan. Mau tahu seperti apa prosesnya, berikut ini video ilustrasi proses pencarian dan penemuan partikel Tuhan, Higgs Boson di Particle Accelerator CERN:


Ilmuwan CERN Sudah Temukan Partikel Tuhan, Higgs Boson

Partikel akselerator di CERN. Di tempat inilah proton dibenturkan dengan kecepatan hampir setara kecepatan cahaya dan hasilnya ilmuwan berhasil menemukan partikel Tuhan, Higgs Boson. Image credit: dailymail.co.uk
Ilmuwan di CERN akan mengumumkan apa yang disebut dengan "Partikel Tuhan (God Particle)" pada sebuah konferensi pers yang akan diselenggarakan minggu depan. Lima ahli fisika terkenal yang terlibat dalam penemuan itu akan diundang. Ilmuwan dari Large Hadron Collider yakin 99.99 persen bahwa partikel Tuhan, Higgs Boson telah ditemukan. yang mana diketahui sebagai "four sigma".

Peter Higgs dari Edinburgh University yang namanya diabadikan sebagai nama dari partikel ini diundang untuk melakukan konferensi pers di Switzerland.

Dikutip astronomi.us dari dailymail.co.uk pada hari Minggu, (08/07/2012), Partikel Tuhan adalah kunci untuk memahami alam semesta. Ahli fisika berpendapat dengan adanya partikel tersebut, maka atom akan memiliki massa. Tanpa adanya massa, partikel tersebut akan menutup dan tidak bisa bersama-sama membentuk segala hal mulai dari planet sampai manusia. Untuk melakukan eksperimen, ilmuwan membuat terowongan di bawah tanah dekat perbatasan Perancis dan Swiss yang disebut dengan Particle Accelerator untuk melakukan penelitian dan percobaan memecah proton (partikel sub atom) pada kecepatan yang mendekati kecepatan cahaya sehingga mampu menciptakan kondisi seperti seper sekian detik setelah Big Bang.

Jika teori fisika tersebut benar, setiap partikel Higgs Boson akan diciptakan dalam setiap 1 triliun tabrakan sebelum kemudian akan meluruh. Peluruhan ini akan meninggalkan "jejak" yang meuncul sebagai benjolan dalam grafik mereka. Walaupun 1.600 triliun tabrakan yang diciptakan dalam terowongan tersebut, hanya ada 300 potensi terdapat partikel Tuhan. (Adi Saputro/ astronomi.us)

Saturday, June 30, 2012

Ilmuwan Berhasil Ciptakan Rekor Suhu Terpanas di Dunia

Matahari
Laboratorium fisika partikel di Amerika Serikat dilaporkan berhasil menciptakan rekor dunia untuk pembuatan suhu tertinggi buatan manusia.

Dilansir UPI, Sabtu 30 Juni 2012, Relativistic Heavy Ion Collider (RHIC) di Brookhaven National Laboratory di New York, AS, menabrakkan ion emas yang mendekati kecepatan cahaya dengan energi intens, hingga akhirnya menciptakan suhu di sekitar 4 triliun derajat Celsius atau 250 ribu kali lebih panas dibanding matahari.

Energi neutron dan proton yang ada di dalam inti emas 'meleleh', kemudian melepas quark serta gluon dasar yang membentuk plasma primordial bebas friksi yang hanya ada saat Big Bang terjadi. "Ada banyak hal keren dari materi super panas ini," kata fisikawan Steven Vigdor.

Sementara itu, Conseil Europene pour la Recherche Nuclaire (CERN), sebuah dewan yang didirikan untuk mendiskusikan pembangunan fasilitas penelitian fisika nuklir di Eropa, juga sedang mencoba menabrakkan ion timah di Large Hadron Collider (LHC) miliknya untuk mengulang penciptaan Big Bang.

Namun, mereka belum menerbitkan pengukuran suhu resminya. Sehingga membuat pencapaian RHIC menjadi rekor dunia untuk suhu terpanas saat ini. (vivanews.com, astronomi.us)

Sunday, May 20, 2012

Mengetahui Cara Kerja GPS (Global Positioning System)

GPS (Global Positioning System). Image credit: gpsnavigationsystem-s.com
Global Positioning System (GPS)) adalah sistem untuk menentukan posisi di permukaan bumi dengan bantuan sinkronisasi sinyal satelit. Sistem ini menggunakan 24 satelit yang mengirimkan sinyal gelombang mikro ke Bumi. Sinyal ini diterima oleh alat penerima di permukaan, dan digunakan untuk menentukan posisi, kecepatan, arah, dan waktu. Sistem yang serupa dengan GPS antara lain GLONASS Rusia, Galileo Uni Eropa, IRNSS India.

Sistem ini dikembangkan oleh Departemen Pertahanan Amerika Serikat, dengan nama lengkapnya adalah NAVSTAR GPS.

GPS Tracker atau sering disebut dengan GPS Tracking adalah teknologi AVL (Automated Vehicle Locater) yang memungkinkan pengguna untuk melacak posisi kendaraan, armada ataupun mobil dalam keadaan Real-Time. GPS Tracking memanfaatkan kombinasi teknologi GSM dan GPS untuk menentukan koordinat sebuah obyek, lalu menerjemahkannya dalam bentuk peta digital.

Cara Kerja

Sistem ini menggunakan sejumlah satelit yang berada di orbit bumi, yang memancarkan sinyalnya ke bumi dan ditangkap oleh sebuah alat penerima. Ada tiga bagian penting dari sistim ini, yaitu bagian kontrol, bagian angkasa, dan bagian pengguna.

Bagian Kontrol
Seperti namanya, bagian ini untuk mengontrol. Setiap satelit dapat berada sedikit diluar orbit, sehingga bagian ini melacak orbit satelit, lokasi, ketinggian, dan kecepatan. Sinyal-sinyal sari satelit diterima oleh bagian kontrol, dikoreksi, dan dikirimkan kembali ke satelit. Koreksi data lokasi yang tepat dari satelit ini disebut dengan data ephemeris, yang nantinya akan di kirimkan kepada alat navigasi kita.

Bagian Angkasa
Bagian ini terdiri dari kumpulan satelit-satelit yang berada di orbit bumi, sekitar 12.000 mil diatas permukaan bumi. Kumpulan satelit-satelit ini diatur sedemikian rupa sehingga alat navigasi setiap saat dapat menerima paling sedikit sinyal dari empat buah satelit. Sinyal satelit ini dapat melewati awan, kaca, atau plastik, tetapi tidak dapat melewati gedung atau gunung. Satelit mempunyai jam atom, dan juga akan memancarkan informasi ‘waktu/jam’ ini. Data ini dipancarkan dengan kode ‘pseudo-random’. Masing-masing satelit memiliki kodenya sendiri-sendiri. Nomor kode ini biasanya akan ditampilkan di alat navigasi, maka kita bisa melakukan identifikasi sinyal satelit yang sedang diterima alat tersebut. Data ini berguna bagi alat navigasi untuk mengukur jarak antara alat navigasi dengan satelit, yang akan digunakan untuk mengukur koordinat lokasi. Kekuatan sinyal satelit juga akan membantu alat dalam penghitungan. Kekuatan sinyal ini lebih dipengaruhi oleh lokasi satelit, sebuah alat akan menerima sinyal lebih kuat dari satelit yang berada tepat diatasnya (bayangkan lokasi satelit seperti posisi matahari ketika jam 12 siang) dibandingkan dengan satelit yang berada di garis cakrawala (bayangkan lokasi satelit seperti posisi matahari terbenam/terbit).

Ada dua jenis gelombang yang saat ini dipakai untuk alat navigasi berbasis satelit pada umumnya, yang pertama lebih dikenal dengan sebutan L1 pada 1575.42 MHz. Sinyal L1 ini yang akan diterima oleh alat navigasi. Satelit juga mengeluarkan gelombang L2 pada frekuensi 1227.6 Mhz. Gelombang L2 ini digunakan untuk tujuan militer dan bukan untuk umum.

Bagian Pengguna
Bagian ini terdiri dari alat navigasi yang digunakan. Satelit akan memancarkan data almanak dan ephemeris yang akan diterima oleh alat navigasi secara teratur. Data almanak berisikan perkiraan lokasi (approximate location) satelit yang dipancarkan terus menerus oleh satelit. Data ephemeris dipancarkan oleh satelit, dan valid untuk sekitar 4-6 jam. Untuk menunjukkan koordinat sebuah titik (dua dimensi), alat navigasi memerlukan paling sedikit sinyal dari 3 buah satelit. Untuk menunjukkan data ketinggian sebuah titik (tiga dimensi), diperlukan tambahan sinyal dari 1 buah satelit lagi.

Dari sinyal-sinyal yang dipancarkan oleh kumpulan satelit tersebut, alat navigasi akan melakukan perhitungan-perhitungan, dan hasil akhirnya adalah koordinat posisi alat tersebut. Makin banyak jumlah sinyal satelit yang diterima oleh sebuah alat, akan membuat alat tersebut menghitung koordinat posisinya dengan lebih tepat.

Karena alat navigasi ini bergantung penuh pada satelit, maka sinyal satelit menjadi sangat penting. Alat navigasi berbasis satelit ini tidak dapat bekerja maksimal ketika ada gangguan pada sinyal satelit. Ada banyak hal yang dapat mengurangi kekuatan sinyal satelit:
  • Kondisi geografis, seperti yang diterangkan diatas. Selama kita masih dapat melihat langit yang cukup luas, alat ini masih dapat berfungsi.
  • Hutan. Makin lebat hutannya, maka makin berkurang sinyal yang dapat diterima.
  • Air. Jangan berharap dapat menggunakan alat ini ketika menyelam.
  • Kaca film mobil, terutama yang mengandung metal.
  • Alat-alat elektronik yang dapat mengeluarkan gelombang elektromagnetik.
  • Gedung-gedung. Tidak hanya ketika di dalam gedung, berada di antara 2 buah gedung tinggi juga akan menyebabkan efek seperti berada di dalam lembah.
  • Sinyal yang memantul, misal bila berada di antara gedung-gedung tinggi, dapat mengacaukan perhitungan alat navigasi sehingga alat navigasi dapat menunjukkan posisi yang salah atau tidak akurat.
(wikipedia.org, astronomi.us)

Thursday, May 10, 2012

Kamera Inframerah Ini Bisa Ketahui Sejarah Alam Semesta 10 Miliar Tahun Lalu

Kamera inframerah yang dibuat Michael Pierce dari University of Wyoming. Image credit: spacedaily.com
Michael Pierce, peneliti dari University of Wyoming berencana untuk mempelajari sejarah alam semesta 10 miliar tahun yang lalu dengan kamera inframerah yang ia ciptakan selama tujuh tahun. Asosiasi profesor fisika dan astronomi University of Wyoming telah membuat Near-Infrared Spectrograph (NIIS), yang merupakan kamera inframerah pertama yang dikembangkan di Wyoming selama hampir 20 tahun, ucap Pierce.

Dikutip dari spacedaily.com, Kamis (10/05/2012), Kamera infra merah ini memiliki panjang 7 kaki, lebar 2.5 kaki dan berat sekitar 1.000 kilogram (1 ton). Kamera ini sepenuhnya kriogenik, yang berarti bahwa semua bagian-bagiannya baik mekanik dan optik yang didinginkan sampai suhu nitrogen cair sekitar 300 derajat Fahrenheit di bawah nol - agar dapat beroperasi pada panjang gelombang inframerah. Infrared adalah jenis cahaya yang berada di luar merah pada spektrum elektromagnetik.

"Saya akan menggunakannya untuk menandai sejarah pembentukan bintang di alam semesta," kata Pierce.

Kecepatan cahaya adalah terbatas. Ketika kita melihat matahari, Anda benar-benar melihat matahari seperti yang muncul sekitar 8 menit yang lalu, katanya.

"Itu sebabnya para astronom mengukur jarak kadang-kadang dalam beberapa tahun cahaya, jarak yang ditempuh cahaya dalam satu tahun (sekitar 6 triliun mil)," kata Pierce.

"Sebagai contoh, bintang terdekat adalah empat tahun cahaya, berarti kita melihat itu empat tahun di masa lalu. Ketika kita melihat cahaya dari jarak yang sangat jauh, kita sebenarnya bisa melihat milyaran tahun ke masa lalu."

Karena alam semesta berkembang, setiap obyek bergerak lebih cepat dan lebih cepat. Akibatnya, cahaya dari obyek yang jauh akan ditarik untuk "panjang gelombang lebih merah dan lebih merah," katanya.

Selain itu, kamera infra merah tersebut akan digunakan untuk mengamati ledakan sinar gamma, satu jenis ledakan bintang. Dengan mengukur frekuensi ledakan tersebut, mungkin untuk mengukur tingkat di mana bintang terbentuk, katanya, ia juga bekerja sama dengan NASA yang juga tertarik menggunakan kamera ini untuk mempelajari ledakan sinar gamma.

"Galaksi kita, yang dikenal sebagai Bima Sakti, diisi dengan gas dan debu, yang mengaburkan cahaya dari bintang-bintang jauh. Cahaya inframerah dapat dengan mudah melewati gas dan debu, dan memungkinkan pandangan yang lebih jelas dari bintang tersebut. Selanjutnya, pandangan tersebut memberikan petunjuk lebih ke pembentukan bintang di dalam galaksi," katanya.

"Saat ini, NIIS ini terbatas pada pencitraan saja. Namun, sedang dikembangkan untuk memasukkan multi-obyek, kemampuan spektroskopi. Spektrograf didesain untuk memecah spektrum bintang, kumpulan pelangi seperti warna yang diperoleh dari sebuah bintang dengan memecah cahaya ke dalam komponen. Hal ini akan memungkinkan untuk penelitian lebih rinci dari alam semesta yang jauh," tambah Pierce.

Pada bulan Maret, kamera inframerah itu dikirim ke Apache Point Observatory, yang terletak di Sunspot, New Mexico, dan dioperasikan oleh New Mexico State University. Kamera ini digunakan pada teleskop dengan 3,5 meter untuk serangkaian tes dan itu berhasil dengan baik, kata Pierce.

"Saya membayangkan kamera inframerah ini sebagai alat transformatif dalam arti bahwa itu pada skala yang lebih besar daripada kebanyakan instrumen inframerah lain," kata Pierce.

"Ini memiliki salah satu bidang pandang terluas - sekitar setengah ukuran bulan - saat ini tersedia ini akan memungkinkan kita untuk mensurvei wilayah yang lebih luas di langit dan jauh lebih efisien.."

Kamera inframerah ini disimpan dalam silinder perak besar yang dipompa bebas dari udara. Sama seperti botol termos, silinder memungkinkan lensa dan komponen mekanis di dalam harus didinginkan sampai 300 derajat di bawah nol.

Ruang vakum di dalam silinder mencegah salju dan es terbentuk di dalam kamera. Perakitan interior didukung menggunakan struktur fiberglass, yang mengisolasi panas dari bagian luar yang hangat.

Dua puluh lima lapisan film Mylar memberikan perlindungan lebih untuk komponen kamera, yang memungkinkan mereka untuk mendinginkan sampai 300 derajat di bawah nol ketika nitrogen cair ditambahkan ke tangki bagian dalam kamera.

Lima belas lensa, yang mengirim kembali citra cahaya dari teleskop, terbungkus di dalamnya. Karena cahaya inframerah tidak dapat menembus kaca, lensa terbuat dari bahan kristal eksotis, termasuk kalsium klorida, barium klorida dan seng selenide . "Ini sangat rapuh," kata Pierce.

Suhu yang sangat rendah merupakan tantangan. Karena logam menyusut pada suhu dingin seperti itu, dan ada kekhawatiran lensa akan menyusut.

Sebuah roda besar di dalam kamera memungkinkan filter yang berbeda (masing-masing sekitar 4 inci) untuk mengirimkan dan mengisolasi panjang gelombang cahaya yang berbeda.

Proyeknya ini dimulai pada tahun 2005 dengan bantuan dana hibah dari National Science Foundation (NSF) senilai $ 800.000. Selain itu negara bagian Wyoming dan NASA Goddard Space Flight Center juga membantu pendanaannya.

Sementara sebagian besar kerja mekanik dilakukan di University of Wyoming dengan bantuan mahasiswa pascasarjana, insinyur dan staf, lensa yang dibuat diuji oleh Optical Solutions Inc, sebuah perusahaan yang berbasis di New Hampshire, kata Pierce.

Awal musim panas ini, kamera inframerah akan ditempatkan di Apache Point karena fasilitas yang berbasis di New Meksiko tersebut memiliki teleskop yang lebih kuat dan memungkinkan untuk penelitian lebih lanjut.

Universitas lain yang ikut bergabung dalam proyek ini antara lain New Mexico State University, Princeton, University of Colorado, University of Virginia, University of Chicago dan the University of Washington-Seattle. (Adi Saputro/ astronomi.us)

Wednesday, May 9, 2012

Mengapa Beberapa Planet Memiliki Arah Rotasi Terbalik?

Jupiter. Image credit: mascipul.blogspot.com
Bumi selalu berputar dari barat ke timur, sehingga matahari terbit dari timur. Namun tak semua planet berotasi ke arah timur. Beberapa di antaranya berputar ke arah sebaliknya seperti Venus.

Dari sekitar 500 planet yang terdeteksi mengelilingi bintang selain Matahari, sebagian besar planet itu tampaknya berputar dengan arah yang sama dengan bintangnya. Lewat laporan yang dipublikasikan dalam jurnal Nature, para astronom menyatakan sejumlah planet extrasolar berotasi dalam arah yang berlawanan dengan bintang yang mereka kelilingi.

Planet aneh yang berputar ke belakang ini umumnya planet gas raksasa, seperti Jupiter, bukan planet batu bulat, seperti Bumi. Selain rotasinya yang berputar ke belakang–yang oleh para astronomi disebut orbit terbalik–planet-planet besar ini berada dekat dengan bintang mereka, berbeda dengan Jupiter, yang berada 778 juta kilometer dari Matahari, lebih dari lima kali lipat jarak Bumi ke Matahari.

“Ini benar-benar aneh, dan itu makin ganjil lagi karena planet tersebut begitu dekat dengan bintangnya,” kata Frederic Rasio dari Northwestern University. “Bagaimana mungkin dia berotasi ke arah sebaliknya dan mengorbit ke arah yang berbeda? Ini gila, melanggar gambaran dasar kami tentang formasi bintang dan planet.”

Para astronom telah lama memegang teori bahwa planet gas raksasa terbentuk jauh dari matahari mereka, sedangkan planet batu, seperti Bumi, lahir lebih dekat. Tapi, hanya karena planet gas itu terbentuk jauh dari pusat sistem planet, kata Rasio dan timnya, bukan berarti planet tersebut tinggal di sana.

Ketika sistem planet berisi lebih dari satu planet, setiap planet memiliki gaya gravitasinya sendiri, menyebabkan planet-planet berinteraksi dan akhirnya menarik planet gas raksasa itu mendekat ke arah bintangnya, bahkan membalik orbitnya.

Proses ini dikenal sebagai gravitational perturbation, atau sebuah pertukaran momentum bersudut tajam.

Para astronom telah mendeteksi planet extrasolar, atau planet di luar sistem tata surya kita, sejak 1995, tapi baru sedikit yang telah ditemukan. (reuters, koran tempo, astronomi.us)

Sunday, May 6, 2012

Astronom Temukan Arsenik dan Selenium Pada Bintang Tua

Bintang jauh. Image credit: spacedaily.com
Ledakan / dentuman Big Bang menghasilkan banyak gas hidrogen dan helium dan sedikit lithium. Semua unsur yang lebih berat di tabel periodik telah diproduksi oleh bintang-bintang selama 13,7 miliar tahun lalu. Para astronom menganalisa cahaya bintang untuk menentukan susunan kimiawi bintang, asal-usul unsur-unsur, usia bintang, dan evolusi galaksi dan alam semesta.

Sekarang untuk pertama kalinya, astronom telah mendeteksi adanya arsenik dan selenium, elemen yang merupakan tetangga dekat bagian tengah dari tabel periodik, dalam sebuah bintang kuno di halo bintang samar yang mengelilingi galaksi Bima Sakti. Arsenik dan selenium merupakan elemen transisi dari cahaya ke produksi elemen berat, dan belum ditemukan pada bintang-bintang tua sampai sekarang.

Dikutip dari spacedaily.com, Minggu (06/05/2012), penulis jurnal Astrophysical, Fellow Ian Roederer dari Observatorium Carnegie menjelaskan: "Bintang seperti Matahari kita dapat membuat elemen hingga oksigen pada tabel periodik, sedangkan yang lainnya besar lainnya dapat merupakan sintesa dari unsur yang lebih berat, dengan proton lebih dalam dari inti bintang, sampai besi dengan fusi nuklir - proses bthe di mana inti atom banyak kehilangan energi. Kebanyakan elemen yang lebih berat dari besi yang dibuat dengan proses yang disebut neutron-capture nucleosynthesis.

"Meskipun neutron dimiliki tanpa mengeluarkan biaya, mereka dapat berubah menjadi proton setelah mereka dalam inti, memproduksi unsur dengan nomor atom lebih besar. Salah satu cara bahwa metode ini dapat bekerja adalah dengan paparan ledakan neutron selama proses kematian bintang dengan ledakan suernova.

Kami menyebutnya sebagai rapid process (r-process). Hal ini dapat menghasilkan elemen di tengah dan bawah dari tabel periodik - dari seng untuk uranium - dalam sekejap mata ", ungkap Ian.

Roederer dan penulis James Lawler, melihat spektrum ultraviolet dari arsip Teleskop luar angkasa Hubble untuk menemukan arsenik dan selenium pada satu bintang 12 miliar tahun dijuluki HD 160617.

Unsur-unsur ini dibuat dalam bintang yang lebih tua, yang sudah lama menghilang, dan kemudian seperti gen diwariskan dari orang tua kepada bayi, kemudian mereka melahirkan bintang yang kita lihat hari ini, HD 160617 ".

Tim juga memeriksa data bintang ini dari arsip publik dari beberapa teleskop berbasis darat dan mampu mendeteksi 45 elemen. Selain arsenik dan selenium, mereka menemukan kadmium yang jarang terlihat, telurium, dan platinum, yang semuanya diproduksi oleh proses-r.

Ini adalah pertama kalinya unsur-unsur ini telah terdeteksi bersama di luar Tata Surya. Para astronom tidak bisa meniru r-proses di laboratorium manapun karena kondisi sangat ekstrim. Kunci untuk pemodelan r-proses bergantung pada pengamatan astronomi.

"Apa yang saya temukan menarik adalah bahwa arsenik dan selenium dapat ditemukan di bintang lain, bahkan yang seperti HD 160617 yang kita sudah pelajari selama puluhan tahun," kata Roederer. "Sekarang kita tahu di mana mencarinya, kita dapat kembali dan mempelajari unsur-unsur di bintang lain.

Memahami r-proses membantu kita tahu mengapa kita menemukan unsur-unsur tertentu seperti barium di Bumi, atau memahami mengapa unsur seperti uranium sangat langka untuk ditemukan di Bumi. (Adi Saputro/astronomi.us)

Wednesday, August 24, 2011

Satuan Astronomi (Astronomical Unit)

Satuan astronomi - SA (SI: ua, bahasa Inggris: Astronomical unit, AU) adalah sebuah satuan jarak, kira-kira sama dengan jarak antara Bumi dan Matahari. Nilai dari SA yang diterima umum adalah 149 597 870 691 ± 30 meter (sekitar 150 juta kilometer atau 93 juta mil

Beberapa konversi:
1 SA = 149.597.870,691 ± 0,030 km ≈ 92 955 807 mil ≈ 8,317 menit cahaya ≈ 499 detik cahaya
1 jam-cahaya ≈ 7,214 AU
1 hari-cahaya ≈ 173 AU
1 tahun-cahaya ≈ 63.241 AU
1 pc ≈ 206.265 AU

Sumber: wikipedia.org

Angin surya bisa jadi sumber listrik untuk Bumi

Ilustrasi. Credit: JAXA
Angin surya (solar wind) bisa jadi sumber listrik bagi peralatan luar angkasa. Itu berita lama. Akan tetapi, ketika para ilmuwan di Washington State University ingin mencoba menggunakannya sebagai sumber listrik untuk kehidupan di Bumi, itu berita baru.Sebuah layar berukuran sangat besar dikirim ke angkasa luar untuk memanen energi dari angin surya yang terjadi di luar angkasa. Listrik yang didapat bisa mencapai miliaran gigawatt. Yang jadi masalah adalah cara mengirimkan listrik itu ke Bumi.

Layar tersebut memiliki kabel tembaga berdiameter 4 inci dan diarahkan ke matahari. Kabel yang panjangnya antara 980 kaki hingga setengah mil itu menghasilkan medan magnet untuk menangkap elektron yang dihasilkan oleh angin surya.Partikel itu kemudian disalurkan ke sebuah penerima yang akan menghasilkan arus listrik.

Sejumlah listrik yang berhasil ditangkap dipakai untuk menenagai layar. Sejumlah lainnya digunakan untuk menghasilkan laser inframerah yang diarahkan ke stasiun luar angkasa atau sumber listrik di Bumi.

Masalahnya, layar tersebut berlokasi puluhan juta mil dari Bumi, melewati kemampuan jangkauan sinar laser. Bahkan sinar laser yang paling kuat pun akan tercerai berai pada jarak seperti itu. "Laser akan terburai dengan lebar ribuan mil," menurut John Mankins, Presiden Artemis Innovation, sebuah perusahaan yang bergerak di bidang tenaga surya. Seperti dikutip New Scientist, Mankins mengatakan kalau lensa yang sangat besar dibutuhkan. "Mungkin 10 hingga 100 kilometer panjangnya," kata Mankins.

Tim peneliti pun mengaku mereka harus membuat laser yang lebih fokus sebelum satelit dengan layar itu dapat digunakan. Tapi, ide penelitian ini sangat penting untuk digali lebih dalam.

Sumber: nationalgeographic.co.id

Robonaut2: Robot Manusia Pertama di Luar Angkasa

Robonaut2. Credit: NASA
Robonaut2 telah menjadi robot manusia pertama yang terbang ke luar angkasa. Diangkut dari International Space Station melalui Space Shuttle Discovery Februari lalu.

Robonaut adalah robot manusia didesain oleh General Motors dan insinyur NASA yang sedang dalam perjalanan melakukan misi pertamanya.

Pada akun Twitter robot ini, ia men-tweet, “Saya sedang di luar angkasa! HALO ALAM SEMESTA!!!”

Robonaut atau R2 tidak mempunyai tugas spesifik di stasiun dan akan melakukan “tugas rutin dan layanan,” kata GM. Sebagian tugasnya adalah melakukan pekerjaan yang terlalu berbahaya untuk dikerjakan manusia.

Dengan berat lebih dari 136 kilo, robot terbuat dari aluminium dan besi itu dapat mengangkat beban hingga 9 kilo dengan masing-masing tangannya. Untuk membuatnya menghabiskan biaya 2.5 juta dollar AS.

Menurut Computer World, robot tersebut mempunyai 38 prosesor komputer.

“Para astronot dan kontroler misi perlu terbiasa dengan alat ini,” kata Kris Verdeyen, Insinyur elektrik proyek Robonaut NASA kepada Computer World.

Ini adalah robot manusia pertama di luar angkasa. Saya bayangkan awalnya hal ini cukup menakutkan. Jika Anda pernah melihat film dengan robot, ini bisa menakutkan.

Sumber: epochtimes.co.id

Saturday, August 20, 2011

Peta Antartika Dapat Prediksi Peningkatan Laut

Peta Antartika terbaru (sumber : Google)
ANTARTIKA - Penelitian yang didanai NASA telah menemukan formasi es baru yang bergerak di Antartika. Peta ini dibuat untuk memprediksi peningkatan laut di masa depan.

"Peta, yang dibuat dengan menggunakan pengamatan radar yang terintegrasi dari konsorsium satelit internasional ini menunjukkan gletser mengalir ribuan kilometer dari jantung benua ke area pantai. Ini merupakan hal penting untuk melakukan prediksi peningkatan permukaan laut di masa depan sebagai efek perubahan iklim," jelas pihak NASA.

"Kami melihat aliran yang menakjubkan dari jantung benua yang belum pernah dijelaskan sebelumnya," ujar Eric Rignot dari Laboratorium NASA Jet Propulsion.

Seperti dikutip TG Daily, Sabtu (20/8/2011), tim menggunakan miliaran titik data yang ditangkap oleh satelit Eropa, Jepang, dan Kanada, untuk melihat kondisi awan, cahaya matahari dan tekstur tanah yang tertutup gletser di masa lalu.

Data dari seluruh satelit kemudian disatukan berdasarkan bentuk dan kecepatan formasi glasial (interval waktu pada zaman es yang berkaitan dengan suhu dingin), termasuk Antartika bagian Timur yang sebelumnya belum terpetakan, dengan luas permukaan mencapai 77 persen dari benua tersebut.

Tim terkejut saat peta itu selesai dibuat. Mereka menemukan bukit baru yang terbelah dengan luas permukaan hingga 5,4 juta mil persegi yang bergerak dari timur ke barat.

Mereka juga menemukan formasi pergerakan es sampai 800 kaki per tahun menuju ke Samudera Antartika dengan pergerakan yang berbeda dari model masa lalu dalam migrasi es.

"Jalur peta ini secara mendasar menjelaskan bahwa es bergerak ke sepanjang permukaan tanah," kata Thomas Wagner, krysopherik Program ilmuwan NASA di Washington.

"Ini merupakan pengetahuan penting untuk memprediksi kenaikan permukaan laut di masa depan," tutup Wagner.

sumber 

Thursday, August 18, 2011

Seperti Inilah Rancangan Stasiun Luar Angkasa China

Kini China terbukti tak cuma jago membuat ponsel atau mobil yang menyerupai ponsel atau kendaraan besutan industri negara barat.

Rencana negara tirai bambu itu untuk mewujudkan stasiun luar angkasa sendiri, merupakan fase penting pencapaian China sebagai salah satu negara kuat yang tak bisa dipandang remeh.

6 Fakta Unik Pesawat Luar Angkasa Endeavour

NASA berencana meluncurkan pesawat luar angkasa Endeavour pada 16 Mei 2011. Peluncuran yang sempat tertunda itu menjadi misi terakhir bagi Endeavour.

Dalam misi terakhirnya, Endeavour akan membawa Alpha Magnetic Spectrometer 02 (AMS 02), perangkat yang berfungsi melakukan deteksi antimateri dan materi gelap serta mengukur radiasi sinar kosmos.

Pesawat luar angkasa Endeavour

Sejarah pembuatan Endeavour, misi yang dilakukannya, dan pencapaian krunya menjadi fakta menarik yang bisa disimak. Berikut ini, enam fakta tentang pesawat luar angkasa Endeavour.

1. Endeavour pesawat luar angkasa termuda

Endeavour merupakan pesawat luar angkasa termuda yang dimiliki NASA. Pesawat luar angkasa ini dibuat untuk menggantikan Challenger yang mengalami kecelakaan pada tahun 1986 dan menewaskan 7 astronot.

Endeavour mulai dikembangkan pada 15 Februari 1982 dan meluncur kali pertama ke luar angkasa pada 7 Mei 1992. Misi yang akan dimulai pada 16 Mei nanti akan menjadi misi ke-25 sekaligus misi terakhir.

2. Endeavour dinamai oleh pelajar

Endeavour adalah satu-satunya pesawat luar angkasa yang dinamai oleh pelajar. Pada tahun 1988, NASA menggelar kompetisi penamaan bagi para pelajar SD dan SMP di Amerika. Saat itu, anak-anak diberi pengarahan bahwa nama pesawat harus berdasarkan misi penelitian kelautan.

Tahun 1989, Presiden George Bush mengumumkan pemenangnya. Nama Endeavour akhirnya terpilih, berasal dari nama kapal HMS Endeavour yang dipakai dalam ekspedisi James Cook pada abad ke-18 ke Pasifik Selatan.

3. Endeavour dikembangkan dengan biaya "murah"

Endeavour dikembangkan dengan biaya yang murah, dengan memanfaatkan sisa dari pengembangan pesawat luar angkasa Discovery dan Atlantis. Strategi ini membuat ongkos pengembangan Endeavour bisa diturunkan hingga 1,7 miliar dollar AS.

4. Endeavour membantu menyelamatkan Teleskop Hubble

Sesaat setelah Teleskop Hubble diluncurkan, ilmuwan menyadari bahwa gambar yang dikirim teleskop luar angkasa itu sedikit kabur. Tahun 1993, Endeavour dikirim untuk menyelesaikan masalah itu dalam serangkaian spacewalk yang kompleks, astronot optik, dan ke bagian lain Hubble. Segera, gambar yang dihasilkan Hubble menjadi jernih dan tajam. Tanpa misi itu, Hubble takkan ada gunanya.

5. Endeavour turut mengantar komponen penting ISS

Dalam misi STS-88 tahun 1998, Endeavour turut mengantar komponen penting ISS. Komponen itu adalah Unity Node, bagian yang menghubungkan modul kerja dan modul tinggal di ISS.

Modul itu digabungkan dengan modul Zarya milik Rusia. Dengan penggabungan itu, stasiun luar angkasa menjadi benar-benar internasional.

Pada misi 16 Mei 2011 nanti, Endeavour mengantar Alpha Magnetic Spectrometer 02 (AMS 02) yang akan membantu pencarian antimateri dan materi gelap.

6. Endeavour adalah agen perubahan

Misi kedua Endeavor pada tahun 1992 membawa perubahan pada misi antariksa. Untuk kali pertama dalam sejarah, astronot Afro Amerika perempuan terbang ke antariksa.

Misi ini juga membawa astronot Jepang bernama Mamoru Mohri. Untuk kali pertama pula, suami-istri astronot bernama Mark Lee dan Jan Davis terbang ke antariksa bersamaan.

Meski menjadi pesawat luar angkasa termuda, Endeavour pensiun lebih dulu dibandingkan Atlantis yang lebih tua. Begitu pensiun, Endeavour akan dimuseumkan di California Science Center di Los Angeles.

Wednesday, August 17, 2011

Penemuan-penemuan Astronomi Terpenting dalam Sejarah

Tentu, ahli biologi dan kimia di luar sana menyembuhkan penyakit atau apa pun, tapi mereka begitu jenuh. Sementara itu, para astronom sibuk menunjukkan kepada kita gambar-gambar manis dari planet jauh dan bermain-main dengan teleskop seukuran bangunan.Bagaimana Anda bisa bersaing dengan itu? Anda tidak bisa, berikut adalah sepuluh hal yang penemuan astronom paling penting di sepanjang zaman:

10. GERAKAN BINTANG DAN PLANET

movement-stars-and-planets
Penemuan
Sulit untuk menyeberang melalui beberapa ribu tahun Babilonia kuno, Mesir, Yunani, India, Cina, Maya dan Persia astronomi sejarah untuk memilih yang menarik, jadi saya ‘akan mengedit dan merangkum semua prestasi mereka ke dalam satu entri.
Mungkin jika peradaban mereka tidak mati mereka akan mendapat tempat lebih baik pada daftar ini, tetapi karena mereka tidak bisa menjaga kelangsungan mereka bersama kerajaan dunia kuno lainnya ….mereka berada di tempat 10
Seberapa penting semua ini?
Banyak prestasi mereka membentuk dasar astronomi modern, tapi fakta bahwa mereka melacak pergerakan bintang-bintang dan planet-planet yang benar-benar seperi bola yang berputar penuh keseluruhan.
Kesadaran bahwa bintang-bintang di langit mengikuti pola tetap, pola yang terprediksi, bersama dengan penemuan planet yang mengikuti jalan mereka sendiri, adalah dua yang paling dasar, konsep dasar astronomi.Dan juga astrologi, 2 bidang studi yang berkaitan.

9. MODEL HELIOSENTRIS

heliocentric-model
Penemuan

Para astronom telah berspekulasi tentang heliosentris (gagasan bahwa bumi berputar mengelilingi matahari, bukan sebaliknya) sejak zaman kuno, tetapi pada tahun 1543 Copernicus adalah orang pertama yang benar-benar menunjukkan perhitungan matematika di balik tentang itu, untuk membuktikan bahwa hal itu adalah konsep benar.
Seberapa Pentingkah hal ini?

Butuh waktu cukup lama untuk agar konsep Copernicus diterima secara universal.dan akhirnya hal itu membentuk dasar dari sebuah revolusi ilmiah.
Ini dieliminasi banyak masalah yang disebabkan oleh model geosentris lama (sulit untuk membuat kalkulasi akurat jika Anda pikir Bumi tidak bergerak), sehingga perubahan besar pertama di bidang astronomi sejak orang menyadari matahari adalah bintang dan bukan Tuhan yang marah.
Juga, penemuannya yang membuat kami merasa bodoh sekali berpikir kami adalah pusat alam semesta . Terima kasih banyak, Copernicus.

8. HUKUM KEPLER

elliptical-movement-discovery
Penemuan

Pada 1609, seorang astronom Jerman bernama Johannes Kepler mengatakan kepada dunia bahwa planet bergerak mengelilingi matahari pada rute elips, bukan dalam lingkaran sempurna seperti yang umum diyakini.
Ya, Anda tahu ilmu pengetahuan dapat membosankan ketika elips bukan lingkaran menjadi salah satu penemuan yang paling penting dalam daftar ini .
Seberapa Pntingkah Hal Ini?

gerakan elips berarti bahwa jarak antara matahari dan perubahan-perubahan planet yang diberikan dari waktu ke waktu, dan itu suatu hal yang penting untuk diketahui jika Anda ingin mengetahui seberapa jauh planet dan seberapa cepat planet bergerak (lebih dekat untuk matahari, semakin cepat bergerak).
Berkat hukum Kepler, astronom mampu memprediksi gerakan planet dengan tingkat akurasi yang jauh lebih tinggi daripada sebelumnya.

7. BULAN DI JUPITER

moons-of-jupiter
Penemuan

Galileo, dapat dikatakan sebagai ilmuwan yang , yang menggunakan teleskop mewah dia menemukan empat bulan yang mengorbit di planet Jupiter pada tahun 1610.
They were the first moons of another planet to be spotted, making them a landmark discovery. Mereka adalah bulan-bulan pertama dari planet lain untuk dilihat, membuat mereka sebagai penemuan .
Seberapa Pentingkah hal Ini?

Ingat ketika kita mengatakan butuh waktu beberapa saat heliosentris untuk dapat diterima?
Penemuan Galileo adalah bagian paling penting dari bukti-bukti yang disajikan dalam mendukung-teori Copernicus pada bulan-bulan yang ditawarkan bukti tak terbantahkan tentang benda langit yang mengorbit selain Bumi.
Mereka juga membuktikan bahwa planet lain selain bumi ada yang punya bulan, dan dalam kasus ini memperjelas bahwa kita tidak istimewa.

6. PETA HERSCHEL

herschels-map
Penemuan

dari 1780-1834, pembuat teleskop William Herschel dan adiknya Caroline secara sistematis memetakan langit, Mengelompokkan ribuan bintang dan nebula dalam prosesnya.
Dia juga menemukan Uranus, dan jika astronom telah terjebak dengan nama yang diusulkan tentang Georgium Sidus (Bintang George) hal itu akan menjadi lelucon yang mengerikan sepanjang abad.
Seberapa Pentingkah Hal ini ?

Membuat peta nyaris tidak dianggap sebagai penemuan, namun Herschel adalah sangat penting , karena ketika itu semua selesai itu mengungkapkan bentuk dan ukuran galaksi Bima Sakti.
Tidak hanya jauh, jauh lebih besar daripada yang diperkirakan sebelumnya, tapi ternyata menjadi berbentuk cakram, dan matahari kita sendiri terletak di dekat pusatnya. Peta Herschel Meluruskan banyak kesalahpahaman tentang sudut kecil letak bumi di alam semesta.

5. TEORI RELATIVITAS

theory-of-relativity
Penemuan

Albert Einstein, seorang ilmuwan Jerman , mengusulkan teori relativitas pada tahun 1915. Summed up, the theory states that mass can warp both space and time, which allows large masses like stars to bend light.
Menyimpulkan, menyatakan teori bahwa massa dapat memperngaruhi ruang dan waktu, yang memungkinkan massa yang besar seperti bintang-bintang untuk membelokkan cahaya.
Seberapa Pentingkah Hal ini?

Untuk memahami makna sebenarnya dari relativitas Anda akan perlu untuk mendengarkan seseorang yang memiliki pengetahuan yang lebih dalam fisika dari beberapa orang yang menulis daftar untuk Internet.
sesederhana mungkin, relativitas Newton diganti teori mekanika, yang telah menjadi dasar astronomi selama 200 tahun sebelumnya.
Einstein berpendapat tantang gerak yang relatif, dan bahwa konsep waktu tergantung pada kecepatan. Ini cara berpikir yang baru digunakan untuk menjelaskan berbagai masalah astronomi yang telah tidak mungkin untuk dipecahkan menggunakan metode Era kuno Newton, dan memberikan cara-cara baru astronom teorisasi tentang bagaimana alam semesta bekerja.

4. ALAM SEMESTA MENGAMBANG (MELUAS)

expanding-universe
Penemuan

Edwin Hubble memberikan dunia astronomi sebuah pukulan pengetahuan antara 1924 dan 1929. Bukan saja karena ia yang pertama kali menemukan galaksi lain, tetapi dengan melacak gerakan mereka dia belajar bahwa mereka bergerak menjauhi kita (dan yang lebih jauh bergerak cepat), yang merupakan bukti pertama kami harus menunjukkan bahwa alam semesta mengembang .
Seberapa Pentingkah Hal ini?

penemuan pertama Hubble mengubah konsepsi kita tentang ukuran alam semesta. Ini adalah bukti pertama yang kami miliki tentang ruang yang benar-benar, sangat, sangat besar. Penemuan yang kedua menawarkan dukungan besar bagi teori Big Bang, yang merupakan ide terbaik yang kita miliki tentang bagaimana alam semesta lahir.

3. RADIO ASTRONOMI

radio-astronomy
Penemuan

Ingat ketika radio menyemarakkan dunia hiburan pertama kali? Tentu saja tidak, karena Anda tidak berusia 80 tahun. Tetapi dalam dunia radio astronomi masih penting sekarang, berkat penemuan oleh Karl Jansky pada tahun 1931.
percobaan-Nya dengan gelombang radio membuat dia menemukan sinyal yang datang dari pusat galaksi, dan dia dianggap sebagai bapak pendiri radio astronomi sedunia.
Seberapa Pentingkah hal Ini?

Para ilmuwan yang menindaklanjuti penemuan Jansky menemukan bahwa ada segala macam gelombang radio datang pada kita dari luar angkasa, dan sumber dari sebagian besar dari mereka adalah benda-benda langit yang tidak bisa dilihat dengan metode lain.
Radio astronomi segera berubah menjadi sebuah bidang besar yang bertanggung jawab atas penemuan banyak bintang dan galaksi, serta nama kelas baru dari objek2 seperti quasar dan pulsar. Aku tidak benar-benar tahu apa itu, tapi mereka terdengar begitu ilmiah sehingga aku menganggap penemuan ini harus penting.

2. LATAR BELAKANG RADIASI GELOMBANG PENDEK KOSMIK

cosmic-microwave-background-radiation

Penemuan

Ini adalah penemuan sepasang astronom radio, Arno Penzias dan Robert Wilson, yang menemukan radiasi latar belakang gelombang mikro kosmik pada tahun 1964.
CMBR adalah jenis radiasi yang hadir dalam jumlah yang sangat kecil (maka latar belakang istilah) di seluruh ruang angkasa, dan dipercaya menjadi sisa dari ketika alam semesta berada dalam tahap kelahiran yang sangat awal .
Seberapa Pentingkah Hal ini?

CMBR menawarkan bukti untuk mendukung teori Big Bang.
Idenya adalah bahwa radiasi ini telah hadir sejak Big Bang, dan telah menyebar keluar sejak alam semesta mengembang (lihat nomor empat dalam daftar).
Its discovery was enough to turn the idea of the Big Bang from a contested concept into the predominant explanation of our origins.
Penemuan Its sudah cukup untuk mengubah ide Big Bang dari konsep yang diragukan menjadi konsep penjelasan yang paling masuk akal tentang asal usul semesta. Penzias dan Wilson memenangkan Hadiah Nobel untuk pekerjaan mereka;

1. EXTRASOLAR PLANETS PLANET EKSTRASURYA

extra solar planets
The Discovery Penemuan

Sebuah planet ekstrasolar adalah salah satu yang ada di luar tata surya kita, dan astronom percaya dalam keberadaan mereka untuk waktu yang sangat lama.
hal itu benar – benar terlihat sampai alat yang memadai tersedia, pada tahun 1995 ketika para astronom Swiss Didier Queloz dan Michel Mayor menemukan sebuah planet di konstelasi Pegasus mereka sebut sebagai 51 Pegasi b.
Seberapa Pentingkah hal ini?

Tidak hanya itu Queloz dan mayor akhirnya membuktikan bahwa planet ekstrasolar di luar sana, tetapi metode yang mereka digunakan telah berulang-ulang untuk menemukan lebih banyak Planet.
Hampir 500 planet ekstrasurya sekarang diketahui ada, dan itu hanya awal (sekarang astronom hanya bisa melihat titik titik yang besar). Mungkin seiring waktu dengan semakin banyaknya planet yang ditemukan, suatu saat kita akan menemukan planet yang dihuni oleh Alien yang murah hati dan seksi :)

Penemuan-penemuan Astronomi Terpenting dalam Sejarah, Inilah Penemuan-penemuan Astronomi Terpenting dalam Sejarah, Penemuan paling penting dalam ilmu astronomi

Saturday, July 23, 2011

Radio Astron, Teleskop yang Lebih Canggih daripada Hubble

Teleskop ruang angkasa Rusia yaitu Radio Astron, merupakan teleskop terbesar yang pernah ada. Teleskop ini telah diluncurkan dari Baikonur di Kazakhstan.

Teleskop ini sendiri terhubung ke teleskop berbasis darat melalui interferometri untuk memberikan resolusi yang jauh lebih tingi dan penggunannya lebih baik 10 ribu kali dibandingkan Hubble Space, milik NASA.

Stasiun bawah tanah di Australia, Chili, China, Eropa, India, Jepang, Korea, Meksiko, Rusia, Afrika Selatan, Ukraina dan Amerika Serikat (AS) telah berjanji mengambil bagian untuk Radio Astron.
Radio Astron, teleskop asal Rusia

"Ini akan memungkinkan kita untuk melihat lebih jauh di alam semesta dengan resolusi yang sangat tajam dan menerima data tentang ekstra fenomena galaksi," ujar Kepala proyek Viktor Khartov, seperti dikutip TG Daily, Rabu (20/7/2011).

Teleskop seberat 5 ribu kg diterbangkan dengan menggunakan pesaeat ruang angkasa oleh sebuah peluncuran Zenit-3M bersama Fregat-SB, Senin pada pukul 06.31 waktu setempat. Ini akan mengorbit pada jalur elips dan mencakup jarak 390 ribu km. Jaraknya lebih jauh dari teleskop sebelumnya yang berada dekat Bumi.

Bahan pembuat teleskop ini terdiri dari 27 serat karbin yang akan membentang di orbit. Teleskop ini memiliki misi lima tahun yang memiliki tugas pengumpulan data pada maser air. Ini merupakan awan molekul air yang terdapat pada cakram galaksi. Data harus membantu peneliti mempelajari lebih lanjut tentang tingkat rotasi galaksi, yang mana saat ini disebut tingkat perluasan ruang dan efek dari energi gelap yang dapat dihitung.

Selain itu, teleskop tersebut juga akan mempelajari astronomi radio, untuk memeriksa distribusi debu dan gas di sekitar bintang-bintang yang meledak. Dan itu akan memeriksa cakrawala peristiwa mengenai sebuah lubang hitam di pusat galaksi M87.

Gambar pertama dari Radio Astro dikenal sebagai Spektrum R yang diharapkan akan dirilis pada akhir tahun ini.


Loading
Posisi Wahana New Horizon Menuju Pluto