Formulir Kontak

Name

Email *

Message *

Wednesday, April 25, 2012

Astronot Amerika Tempatkan Foto Keluarga di Bulan

Foto Charlie dan keluarga yang diletakkan di Bulan. Image credit: NASA
Pada 23 April 1972, astronot Apollo 16, Charlie Duke dan John Young memulai misi EVA yang terakhir dengan menggunakan kendaraan robot Lunar Roving Vehicle. Sebelum ia menyiapkan Solar Wind Collector, Charlie menempatkan foto keluarganya di permukaan Bulan. Dan foto di atas merupakan foto yang diambil dengan menggunakan kamera Hasselblad.

Foto keluarga Charlie (diperbesar). Image credit: NASA
Dikutip dari universetoday.com, Rabu (25/04/2012), Dalam foto tersebut terdapat gambar Charlie, istrinya Dorothy, dan kedua anaknya yaitu Charles dan Thomas. Foto tersebut dibungkus dengan plastik kecil dan terlihat sedikit kusut karena sebelumnya ditempatkan di saku baju luar angkasa Charlie. Mungkin saat ini foto tersebut masih berada di Bulan. (Adi Saputro/astronomi.us)

Tuesday, April 24, 2012

Kosmolog Rusia: Lubang Hitam Mungkin Miliki Kehidupan

Citra hasil simulasi yang bakal terlihat di sekitar lubang hitam saat cahaya dibelokkan akibat tersedot gravitasi sangat kuat. Image credit: Alain Riazuelo/IAP/UPMC/CNRS
Kosmolog asal Rusia, Vyacheslav Dokuchaev, berpendapat bahwa kehidupan bisa saja terdapat di lubang hitam supermasif. Menurutnya, dalam lubang hitam supermasif sebenarnya terdapat kondisi yang mendukung kehidupan. Makhluk yang hidup dalam lubang hitam akan berevolusi menjadi makhluk yang paling maju di semesta.

Tentu saja pendapat Dokuchaev ini mencengangkan. Pasalnya, hingga sejauh ini, ilmuwan hanya memprediksikan bahwa kehidupan terdapat di Mars dan planet ekstrasurya, dan itu pun belum terbukti. Di samping itu, diyakini bahwa lubang hitam memiliki gravitasi kuat yang mampu menyedot apa pun ke dalamnya. Rasanya tidak mungkin ada kehidupan di sana.

Namun, Dokuchaev menjelaskan bahwa ada bukti kemungkinan kehidupan di lubang hitam dalam jurnal arXiv Cornell University, AS. Ia mengatakan bahwa di dalam lubang hitam ada sebuah wilayah di mana foton bisa tetap ada dalam orbit periodik yang stabil. Menurutnya, jika ada foton yang bisa 'selamat', maka sangat mungkin ada planet yang juga eksis.

Orbit stabil itu hanya terdapat setelah melewati horizon peristiwa, mulut dari lubang hitam, di mana tak ada keteraturan ruang dan waktu. Melampaui horizon peristiwa, terdapat horizon Cauchy di mana ruang dan waktu kembali stabil. Di horizon itulah, menurut Dokuchaev, kehidupan terdapat.

Seperti dikutip Daily Mail, Jumat (7/10.2011), Dokuchaev mengatakan, "Ruang dalam lubang hitam supermasif dihuni oleh peradaban yang sangat maju, tak terlihat dari luar." Ia mengatakan bahwa kehidupan yang ada sudah tergolong Type III dalam skala Kardashev, jauh dari manusia yang ada pada Type I.

Skala Kardashev adalah sebuah skala yang dikembangkan oleh astronom Rusia, Nikolai Kardashev, untuk mengukur kemajuan sebuah peradaban secara astronomi. Type I ialah peradaban yang mampu memanfaatkan potensi planet yang dihuni, Type II adalah peradaban yang mampu memanfaatkan potensi tata suryanya, dan Type III bisa memanfaatkan potensi galaksinya.

Betapapun hebatnya argumen Dokuchaev, hal itu sulit untuk dibuktikan. Kita mungkin tak akan tahu apakah pendapat Dokuchaev benar atau salah sebab mengobservasi lubang hitam dan interiornya masih merupakan tantangan besar saat ini. Mungkin, pendapat Dokuchaev hanya akan bertahan sebagai teori. (kompas.com, astronomi.us)

Saturday, April 21, 2012

Hilangnya Jejak Batu Bukti Bahwa Permukaan Mars Berubah

Jejak batu yang jatuh dari tepi kawah di Mars hilang seiring dengan waktu. Image credit: NASA/JPL/University of Arizona
Gambar di atas merupakan gambar yang diambil oleh kamera HiRISE yang menunjukkan bahwa tanah di permukaan Mars berubah seiring dengan berjalannya waktu. Pada 2010 lalu, HiRISE menjumpai jejak batu yang jatuh dari pinggir kawah di Mars, namun setahun kemudian, dengan kamera yang sama terlihat bahwa jejak batu tersebut telah menghilang. Hilangnya jejak tersebut kemungkinan disebabkan oleh debu halus di atmosfer Mars yang jatuh dan menutupi jejak batu.

Friday, April 20, 2012

Ilmuwan Selidiki Lubang Hitam Supermasif Tidak Lama Setelah Big Bang

Lubang hitam supermasif. Image credit: faktailmiah.com
Para peneliti dari Carnegie Mellon University telah menemukan apa yang menyebabkan lubang hitam supermasif awal bertumbuh sedemikian cepat – pola makan stabil konsumsi makanan dingin cepat saji.

Simulasi komputer, dengan menggunakan superkomputer di National Institute for Computational Sciences dan Pittsburgh Supercomputing Center, serta menggunakan teknologi GigaPan CMU, menunjukkan bahwa aliran tipis gas dingin yang tidak terkendali ke arah pusat lubang hitam pertama, menyebabkan mereka bertumbuh lebih cepat daripada apa pun di alam semesta. Temuan ini dipublikasikan dalam Astrophysical Journal Letters.

Pada masa-masa awal alam semesta, sekitar 700-800 juta tahun setelah Big Bang, sebagian besar objek adalah kecil. Bintang-bintang dan galaksi-galaksi pertama baru saja mulai terbentuk dan bertumbuh pada bagian yang terisolasi di alam semesta. Menurut teori astrofisika, lubang hitam yang ditemukan selama era ini juga seharusnya berbentuk kecil sesuai proporsinya dengan galaksi di mana mereka berada. Namun, pengamatan terakhir dari Sloan Digital Sky Survey (SDSS) telah menunjukkan bahwa itu tidak terjadi – lubang hitam supermasif besar sudah ada sekitar 700 juta tahun setelah Big Bang.

“Sloan Digital Sky Survey menemukan lubang-lubang hitam supermasif pada kurang dari 1 miliar tahun. Ukuran mereka sama dengan lubang hitam yang paling besar saat ini, yang berusia 13,6 miliar tahun,” kata Tiziana Di Matteo, profesor fisika di Carnegie Mellon. “Ini adalah teka-teki. Mengapa beberapa lubang hitam terbentuk begitu awal ketika dibutuhkan waktu seluruh usia alam semesta bagi lubang hitam lainnya untuk mencapai massa yang sama?”

Lubang hitam supermasif merupakan lubang hitam terbesar, dengan miliaran kali massa lebih besar dari matahari. Biasanya lubang hitam hanya memiliki massa sampai 30 kali lebih besar dari matahari. Astrofisikawan telah menentukan bahwa lubang hitam supermasif dapat terbentuk ketika dua galaksi bertabrakan dan dua lubang hitam mereka bergabung menjadi satu. Tabrakan-tabrakan galaksi ini terjadi di alam semesta pada tahun-tahun kemudian, namun tidak terjadi pada masa-masa awal. Dalam beberapa jutaan tahun pertama setelah Big Bang, galaksi terlalu sedikit dan terlalu terpisah jauh untuk bisa bergabung.

“Jika Anda menulis rumus pada bagaimana galaksi dan lubang hitam terbentuk, tampaknya tidak mungkin dapat membentuk massa yang besar pada waktu sedemikian awal,” kata Rupert Croft, seorang profesor fisika di Carnegie Mellon. “Tapi kita melihat ke luar angkasa dan mereka memang ada.”

Untuk mengetahui persis bagaimana lubang hitam supermasif bisa menjadi ada, Di Matteo, Croft dan Nishikanta Khandai menciptakan simulasi kosmologis terbesar hingga saat ini. Disebut MassiveBlack, simulasi ini difokuskan pada penciptaan kembali miliar tahun pertama setelah Big Bang.

“Simulasi ini benar-benar raksasa. Ini adalah yang terbesar dalam hal tingkat fisika dan volume yang sebenarnya. Kami melakukan ini karena tertarik untuk melihat hal-hal yang langka di alam semesta, seperti lubang hitam pertama. Karena mereka begitu langka, Anda perlu mencari lebih dari volume ruang yang besar,” kata Di Matteo.

Distribusi massal skala besar kosmologis dalam volume simulasi MassiveBlack. Kepadatan gas terproyeksi pada keseluruhan volume ('membuka' ke dalam 2D) ditampilkan dalam gambar skala besar (latar belakang). Kedua gambar di atas menunjukkan dua zoom-in peningkatan faktor 10, wilayah tempat lubang hitam yang paling besar - quasar pertama - terbentuk. Lubang hitam di tengah gambar dan sedang diberi makan oleh aliran gas dingin. (Kredit: Yu Feng)

Mereka mulai dengan menjalankan simulasi di bawah kondisi yang ditetapkan dalam standar model kosmologi – teori yang diterima serta hukum-hukum fisika modern yang mengatur pembentukan dan pertumbuhan alam semesta.

“Kami tidak memasukkan apa pun yang bersifat gila. Tak ada fisika yang ajaib, tidak ada hal-hal tambahan. Ini adalah fisika yang sama yang membentuk galaksi dalam simulasi pada alam semesta kemudian,” kata Croft. “Namun secara ajaib, quasar-quasar awal ini, seperti yang sudah diobervasi, memang muncul. Kami tidak tahu mereka akan menampakkan diri. Sungguh menakjubkan saat mengukur massa mereka dan menjadi ‘Wow! Terdapat ukuran yang tepat dan menunjukkan dengan tepat pada titik yang tepat pada waktunya.’ Ini adalah kisah sukses bagi teori kosmologi modern.”

Data simulasi mereka dimasukkan ke dalam sebuah teknologi baru yang dikembangkan oleh para ilmuwan komputer Carnegie Mellon, yang disebut Time Machine GigaPan. Teknologi ini memungkinkan para peneliti melihat simulasi mereka seolah-olah itu adalah video dengan resolusi yang sangat tinggi. Hal ini memungkinkan mereka untuk dengan mudah menggeser keseluruhan simulasi alam semesta sebagaimana alam semesta terbentuk dan bergerak maju mundur melalui waktu yang diperlukan. Mereka kemudian dapat memperbesar peristiwa yang tampaknya menarik, melihatnya secara lebih rinci daripada yang bisa dilihat dengan menggunakan teleskop.

Ketika mereka meluncur ke penciptaan lubang hitam supermasif pertama, mereka melihat sesuatu yang tidak terduga. Biasanya, saat gas dingin mengalir menuju lubang hitam, mereka bertabrakan dengan gas lainnya di galaksi sekitarnya. Hal ini menyebabkan gas dingin memanas dan kemudian mendingin kembali sebelum memasuki lubang hitam. Proses ini, yang disebut sebagai pemanasan kejutan, akan menghentikan pertumbuhan lubang hitam yang cukup cepat di alam semesta awal untuk mencapai massa yang bisa kita lihat. Sebaliknya, Di Matteo dan Croft melihat pada simulasi aliran tipis gas padat yang dingin mengalir di sepanjang filamen yang memberikan struktur alam semesta dan langsung ke pusat lubang hitam dengan kecepatan yang sangat tinggi, membuat makanan dingin cepat saji untuk lubang hitam. Konsumsi yang tidak terkendali ini menyebabkan lubang hitam secara eksponensial bertumbuh dengan lebih cepat dibandingkan pertumbuhan galaksi di mana mereka berada.

Dan karena galaksi terbentuk ketika sebuah lubang hitam terbentuk, hasilnya juga bisa menjelaskan bagaimana galaksi pertama kali terbentuk, memberikan petunjuk yang lebih untuk bagaimana alam semesta menjadi ada. Di Matteo dan Croft berharap untuk sedikit mendorong batas-batas simulasi mereka, bahkan menciptakan simulasi yang lebih besar yang mencakup lebih banyak ruang dan waktu.(faktailmiah.com, astronomi.us)

Astronom Deteksi Debu dan Gas Lubang Hitam Pada Awal Alam Semesta

Galaksi J1120+0641 (titik merah dalam lingkaran hijau0 terlihat pada panjang gelombang terpendek, dan emisinya terdeteksi oleh IRAM (bawah). Image credit: Royal Astronomical Society (RAS)
Pengembangan terbaru terhadap IRAM memungkinkan para ilmuwan mendeteksi gas dan debu yang baru ditemukan, yang mencakup karbon dalam jumlah yang cukup signifikan.

Dengan menggunakan array IRAM teleskop gelombang-milimeter di Pegunungan Alpen Perancis, tim astronom Eropa dari Jerman, Inggris dan Perancis telah menemukan sebuah waduk besar gas dan debu dalam galaksi yang mengitari lubang hitam supermasif yang paling jauh yang pernah diketahui. Galaksi yang disebut J1120 0641 ini memiliki jarak tempuh cahaya yang mengindikasikan usia 740 juta tahun setelah Big Bang, ketika alam semesta ini hanya 1/18 usia saat ini.

Ketua tim riset, Dr. Bram Venemans dari Institut Astronomi Max-Planck di Heidelberg, Jerman, akan mempresentasikan penemuan baru ini pada Rabu, 28 Maret, dalam Pertemuan Astronomi Nasional di Manchester.

Array Institut de Radioastronomie Millimetrique (Iram) terdiri dari enam teleskop berukuran 15-m yang mendeteksi emisi pada panjang gelombang milimeter (sekitar sepuluh ribu kali selama cahaya terlihat), berlokasi di Dataran de Bure pada ketinggian 2550-m di Pegunungan Alpen Perancis. Teleskop IRAM bekerja bersamaan dalam mensimulasikan sebuah teleskop yang jauh lebih besar dalam interferometer, yang dapat mempelajari objek dalam detail yang sangat halus.

Pengembangan terbaru terhadap IRAM memungkinkan para ilmuwan mendeteksi gas dan debu yang baru ditemukan, yang mencakup karbon dalam jumlah yang cukup signifikan. Ini sungguh tidak terduga, karena unsur kimiawi karbon terbentuk melalui fusi nuklir helium di dalam pusat bintang besar dan dihempaskan ke dalam galaksi ketika bintang tersebut mengakhiri hidupnya dalam ledakan supernova yang dramatis.

“Sungguh membingungkan bahwa sejumlah besar karbon yang berlimpah gas dapat terbentuk pada saat-saat awal alam semesta. Keberadaan karbon yang sedemikian banyak itu menegaskan bahwa pembentukan bintang besar pasti terjadi dalam periode singkat antara Big Bang dan waktu di mana kita saat ini mengamati galaksi tersebut,” kata Dr. Venemans.

Berdasarkan emisi dari debu, Venemans beserta timnya mampu menunjukkan bahwa galaksi tersebut masih bekerja membentuk bintang-bintang dengan kecepatan 100 kali lebih tinggi daripada di Bima Sakti kita.

Mereka bersyukur atas dilakukannya pengembangan terhadap IRAM, yang membuat penemuan ini bisa terwujud. “Memang, beberapa tahun yang lalu kami tidak akan mampu mendeteksi emisi itu.” kata salah satu anggota tim riset, Dr. Pierre Cox, direktur IRAM.

Para astronom sangat antusias dengan fakta bahwa sumber ini juga terlihat dari belahan bumi selatan di mana Atacama Large Millimeter/submillimeter Array (ALMA), yang akan menjadi teleskop sub-milimeter/milimeter paling canggih di dunia, saat ini sedang dibangun di Chili. Pengamatan dengan ALMA akan memungkinkan studi yang mendetail terhadap struktur galaksi tersebut, termasuk bagaimana gas dan debu bergerak masuk ke dalamnya.

Dr. Richard McMahon, salah satu anggota tim riset dari Universitas Cambridge di Inggris membayangkan ke depan ketika ALMA sepenuhnya beroperasi pada akhir tahun ini. “Pengamatan saat ini hanya menyediakan sekilas tentang apa yang akan ALMA mampu lakukan saat kita menggunakannya untuk mempelajari pembentukan generasi galaksi-galaksi pertama.” (faktailmiah.com, astronomi.us)

Astronom Temukan Bintang Kerdil Putih Tertua di Alam Semesta

Terbakarnya inti bintang kerdil putih serupa dengan Matahari kita, ungkap Kilic. Image credit: spacedaily.com
Asisten profesor di University of Oklahoma dan beberapa rekan lainnya telah mengidentifikasi dua bintang kerdil putih yang dianggap sebagai paling tua dan paling dekat yang dikenal manusia. Para astronom ini memperkirakan usia dari bintang ini sekira 11-12 miliar tahun dan berjarak hanya 100 tahun cahaya dari Bumi. Bintang-bintang ini merupakan contoh bintang yang terbentuk tidak lama setelah Big Bang.

Mukremin Kilic, asisten profesor fisika dan astronomi di OU College of Arts and Sciences dan penulis utama makalah ini, mengumumkan penemuan itu. Kilic mengatakan, "Sebuah kerdil putih adalah seperti kompor panas, satu kali kompor dimatikan, mendingin perlahan-lahan dari waktu ke waktu dan dengan mengukur bagaimana mendinginnya kompor, kita bisa mengatakan berapa lama akan mati. Dua bintang telah kita identifikasi.. pendinginan selama miliaran tahun. "

Dikutip dari spacedaily.com, Jum'at (20/04/2012), Kilic menjelaskan bahwa inti bintang kerdil putih mirip dengan Matahari. Dalam sekitar 5 miliar tahun, Matahari juga akan terbakar dan berubah menjadi bintang katai putih. Ini akan kehilangan lapisan luarnya karena mati dan berubah menjadi bintang yang sangat padat seukuran Bumi.

Dikenal sebagai WD 0346+246 dan SDSS J110217, 48+411315.4 (J1102), bintang-bintang ini terletak di rasi bintang Taurus dan Ursa Mayor. Kilic dan rekannya mengambil gambar inframerah menggunakan NASA Spitzer Space Telescope untuk mengukur suhu dari bintang-bintang tersebut. Dan, selama periode tiga tahun, mereka mengukur jarak J1102 itu dengan melacak gerakannya menggunakan teleskop 2.4 meter di Observatorium MDM di dekat Tucson, Arizona.

"Kebanyakan bintang hampir berada tetap di langit, tetapi J1102 bergerak dengan kecepatan 600.000 mil per jam dan sedikit lebih dari 100 tahun cahaya dari Bumi," komentar rekan penulis John Thorstensen dari Dartmouth College.

"Berdasarkan pengamatan optik dan inframerah dari bintang-bintang dan analisis kita, bintang-bintang ini memiliki suhu sekitar 3700 dan 3800 derajat di permukaannya," kata co-penulis Piotr Kowalski dari Piotr Kowalski of Helmholtz Center Potsdam di Jerman. Berdasarkan pengukuran suhu, Kilic dan rekan-rekannya mampu untuk memperkirakan usia bintang-bintang tersebut.

"Hal ini seperti penyelidikan TKP," tambah Kilic. "Kami mengukur suhu mayat - dalam kasus kami sebuah bintang mati - kemudian menentukan waktu kejahatan Dua bintang kerdil putih sudah mati untuk hampir seluruh sejarah alam semesta.." (Adi Saputro/astronomi.us)

Thursday, April 19, 2012

Misteri Kehidupan Ekstraterestrial

Kehidupan ekstraterestrial didefinisikan sebagai kehidupan yang tidak berasal dari planet bumi. Keberadaan kehidupan di luar planet ini masih sebatas teori dan perkiraan-perkiraan mengenai kehidupan tersebut masih terus dicetuskan. Stephen Hawking dan Carl Sagan berpendapat bahwa tidak mungkin kehidupan hanya ada di bumi saja.

Hipotesis-hipotesis mengenai asal muasal kehidupan ekstraterestrial, jika ada, adalah sebagai berikut: ada yang mengusulkan bahwa kehidupan mungkin muncul secara mandiri dari berbagai tempat di alam semesta. Hipotesis alternatif adalah panspermia, yang menyatakan bahwa kehidupan muncul dari satu lokasi, kemudian menyebar antara planet-planet berpenghuni. Kedua hipotesis ini tidak saling eksklusif. Studi dan teori dari kehidupan ekstraterestrial dikenal sebagai astrobiologi, eksobiologi atau xenobiologi. Bentuk-bentuk kehidupan ekstraterestrial berkisar dari kehidupan berskala bakteri sampai pada mahluk cerdas.

Gagasan mengenai tempat tinggal kehidupan ekstraterestrial terus berkembang, seperti di Venus dan Mars; bulan-bulan Yupiter dan Saturnus seperti Europa, nceladus dan Titan; dan planet luar surya seperti Gliese 581 c dan d yang dikatakan berada di zona layak huni

Kepercayaan bahwa benda terbang aneh (BETA) berasal dari kehidupan ekstraterestrial dan klaim penculikan oleh alien dianggap palsu oleh para ilmuwan. Kebanyakan penampakan BETA merupakan pesawat buatan bumi, objek astronomik atau hanya berupa hoax, namun beberapa penampakan tidak dapat dijelaskan. (Wikipedia.org, astronomi.us)

Syarat Kelayakhunian Suatu Planet



Kelayakhunian planet (Inggris: planetary habitability) adalah ukuran potensi dari planet atau satelit alami untuk mendukung kehidupan. Kehidupan mungkin berkembang dengan sendirinya pada suatu planet atau satelit alami, atau mungkin juga ditransfer dari planet lain, suatu proses teoretis yang dikenal sebagai panspermia. Karena eksistensi kehidupan luar bumi masih belum pasti adanya, sebagian besar kelayakhunian planet adalah perhitungan dari kondisi di Bumi dan karakteristik Matahari dan tata surya yang tampaknya menguntungkan makhluk hidup untuk berkembang–khususnya faktor-faktor yang menopang makhluk hidup yang kompleks, organisme multiselular, tidak hanya yang sederhana, organisme uniselular. Penelitian dan teori dalam hal ini adalah komponen dari ilmu planet dan disiplin yang muncul dari astrobiologi.

Syarat mutlak untuk adanya kehidupan adalah sumber energi, dan gagasan kelayakhunian planet menunjukkan bahwa kriteria lain dari geofisika, geokimia, dan astrofisika harus dipenuhi sebelum suatu badan astronomi dapat mendukung kehidupan. Dalam rencana astrobiologi NASA, telah didefinisikan kriteria kelayakhunian utama sebagai "daerah luas untuk air, kondisi yang baik untuk terhubungnya molekul-molekul organik kompleks, dan sumber energi untuk menyokong metabolisme."

Dalam menentukan potensi kelayakhunian suatu planet atau satelit, studi terfokus kepada komposisi, sifat orbit, atmosfer, dan interaksi kimia yang potensial. Karakteristik bintangnya yang penting mencakup massa dan luminositas, variabilitas yang stabil, tingkat logam yang tinggi. Planet dan satelit terestrial atau bebatuan dengan potensi kimiawi mirip Bumi adalah fokus utama dalam penelitian astrobiologi, meskipun teori kelayakhunian yang lebih spekulatif kadang mempertimbangkan biokimia alternatif dan jenis lain dari badan astronomi.


Loading
Posisi Wahana New Horizon Menuju Pluto