Formulir Kontak

Name

Email *

Message *

Thursday, December 23, 2010

Apa Itu Kecepatan Cahaya (Light Speed) ?

Sejauh ini ilmuwan belum menemukan sesuatu yang kecepatannya bisa melebihi kecepatan cahaya. Tapi apa itu kecepatan cahaya ?. Kecepatan cahaya merupakan sebuah konstanta yang disimbolkan dengan huruf c, singkatan dari celeritas (yang dirujuk dari dari bahasa Latin) yang berarti "kecepatan". Kecepatan cahaya dalam sebuah ruang hampa udara didefinisikan saat ini pada 299.792.458 meter per detik (m/s) atau 1.079.252.848,8 kilometer per jam (km/h) atau 186.282.4 mil per detik (mil/s) atau 670.616.629,38 mil per jam (mil/h), yang ditetapkan pada tahun 1975 dengan toleransi kesalahan sebesar 4×10−9.

Pada tahun 1983, satuan meter didefinisikan kembali dalam Sistem Satuan Internasional (SI) kemudian ditetapkan pada 17th Conférence Générale des Poids et Mesures sebagai ... the length of the path travelled by light in vacuum during a time interval of 1299.792.458 of a second, sehingga nilai konstanta c dalam meter per detik sekarang tetap tepat dalam definisi meter, sebagai jarak yang ditempuh oleh cahaya dalam ruang hampa pada 1299.792.458 detik.

[caption id="" align="alignnone" width="300" caption="Cahaya Matahari diperkirakan memerlukan waktu 8 menit untuk mencapai Bumi. "][/caption]

Sejarah dan Kronologis

Beragam ilmuwan sepanjang sejarah telah mencoba untuk mengukur kecepatan cahaya.
  • Pada tahun 1629, Isaac Beeckman melakukan observasi sinar flash yang dipantulkan oleh cermin dari jarak 1 mil (1,6 kilometer).
  • Pada tahun 1638, Galileo Galilei berusaha untuk mengukur kecepatan cahaya dari waktu tunda antara sebuah cahaya lentera dengan persepsi dari jarak cukup jauh.
  • Pada tahun 1667, percobaan Galileo Galilei diteliti oleh Accademia del Cimento of Florence, dengan rentang 1 mil, tetapi tidak terdapat waktu tunda yang dapat diamati. Berdasarkan perhitungan modern, waktu tunda pada percobaan itu seharusnya adalah 11 mikrodetik. Dan Galileo Galilei mengatakan bahwa observasi itu tidak menunjukkan bahwa cahaya mempunyai kecepatan yang tidak terhingga, tetapi hanya menunjukkan bahwa cahaya mempunyai kecepatan yang sangat tinggi.
  • Pada tahun 1676, sebuah percobaan awal untuk mengukur kecepatan cahaya dilakukan oleh Ole Christensen Rømer, seorang ahli fisika Denmark dan anggota grup astronomi dari French Royal Academy of Sciences. Dengan menggunakan teleskop, Ole Christensen Rømer mengamati gerakan planet Jupiter dan salah satu bulan satelitnya, bernama Io. Dengan menghitung pergeseran periode orbit Io, Rømer memperkirakan jarak tempuh cahaya pada diameter orbit bumi sekitar 22 menit. Jika pada saat itu Rømer mengetahui angka diameter orbit bumi, kalkulasi kecepatan cahaya yang dibuatnya akan mendapatkan angka 227×106 meter/detik. Dengan data Rømer ini, Christiaan Huygens mendapatkan estimasi kecepatan cahaya pada sekitar 220×106 meter/detik. Penemuan awal penemuan grup ini diumumkan oleh Giovanni Domenico Cassini pada tahun 1675, periode Io, bulan satelit planet Jupiter dengan orbit terpendek, nampak lebih pendek pada saat Bumi bergerak mendekati Jupiter daripada pada saat menjauhinya. Rømer mengatakan hal ini terjadi karena cahaya bergerak pada kecepatan yang konstan. Pada bulan September 1676, berdasarkan asumsi ini, Rømer memperkirakan bahwa pada tanggal 9 November 1676, Io akan muncul dari bayang-bayang Jupiter 10 menit lebih lambat daripada kalkulasi berdasarkan rata-rata kecepatannya yang diamati pada bulan Agustus 1676. Setelah perkiraan Rømer terbukti, dia diundang oleh French Academy of Sciences[17] untuk menjelaskan metode yang digunakan untuk hal tersebut.[18] Diagram di samping adalah replika diagram yang digunakan Rømer dalam penjelasan tersebut.
  • Pada tahun 1704, Isaac Newton juga menyatakan bahwa cahaya bergerak pada kecepatan yang konstan. Dalam bukunya berjudul Opticks, Newton menyatakan besaran kecepatan cahaya senilai 16,6 x diamater Bumi per detik (210.000 kilometer/detik).
  • Pada tahun 1725, James Bradley mengatakan, cahaya bintang yang tiba di Bumi akan nampak seakan-akan berasal dari sudut yang kecil, dan dapat dikalkulasi dengan membandingkan kecepatan Bumi pada orbitnya dengan kecepatan cahaya. Kalkulasi kecepatan cahaya oleh Bradley adalah sekitar 298.000 kilometer/detik (186.000 mil/detik). Teori Bradley dikenal sebagai stellar aberration.
  • Pada tahun 1849, pengukuran kecepatan cahaya, yang lebih akurat, dilakukan di Eropa oleh Hippolyte Fizeau. Fizeau menggunakan roda sprocket yang berputar untuk meneruskan cahaya dari sumbernya ke sebuah cermin yang diletakkan sejauh beberapa kilometer. Pada kecepatan rotasi tertentu, cahaya sumber akan melalui sebuah kisi, menempuh jarak menuju cermin, memantul kembali dan tiba pada kisi berikutnya. Dengan mengetahui jarak cermin, jumlah kisi, kecepatan putar roda, Fizeau mendapatkan kalkulasi kecepatan cahaya pada 313×106 meter/detik.
  • Pada tahun 1862, Léon Foucault bereksperimen dengan penggunaan cermin rotasi dan mendapatkan angka 298×106 meter/detik.
  • Albert Abraham Michelson melakukan percobaan-percobaan dari tahun 1877 hingga tahun 1926 untuk menyempurnakan metode yang digunakan Foucault dengan penggunaan cermin rotasi untuk mengukur waktu yang dibutuhkan cahaya pada 2 x jarak tempuh antara Gunung Wilson dan Gunung San Antonio, di California. Hasil pengukuran menunjukkan 299.796.000 meter/detik. Beliau wafat lima tahun kemudian pada tahun 1931.
  • Pada tahun 1946, saat pengembangan cavity resonance wavemeter untuk penggunaan pada radar, Louis Essen dan A. C. Gordon-Smith menggunakan gelombang mikro dan teori elektromagnetik untuk menghitung kecepatan cahaya. Angka yang didapat adalah 299.792±3 kilometer/detik.
  • Pada tahun 1950, Essen mengulangi pengukuran tersebut dan mendapatkan angka 299.792.5±1 kilometer/detik, yang menjadi acuan bagi 12th General Assembly of the Radio-Scientific Union pada tahun 1957.

Angka yang paling akurat ditemukan di Cambridge pada pengukuran melalui kondensat Bose-Einstein dengan elemen Rubidium. Tim pertama dipimpin oleh Dr. Lene Vestergaard Hau dari Harvard University and the Rowland Institute for Science. Tim yang kedua dipimpin oleh Dr. Ronald L. Walsworth, dan, Dr. Mikhail D. Lukin dari the Harvard-Smithsonian Center for Astrophysics.

Notasi kecepatan cahaya (c) mempunyai makna "konstan" atau tetap yang digunakan sebagai notasi kecepatan cahaya dalam ruang hampa udara, namun terdapat juga penggunaan notasi c untuk kecepatan cahaya dalam medium material sedangkan c0 untuk kecepatan cahaya dalam ruang hampa udara.[22] Notasi subskrip ini dimaklumkan karena dalam literatur SI sebagai bentuk standar notasi pada suatu konstanta, ada juga berbentuk seperti: konstanta magnetik µ0, konstanta elektrik e0, impedansi ruang kamar Z0.

Menurut Albert Einstein dalam teori relativitas, c adalah konstanta penting yang menghubungkan ruang dan waktu dalam satu kesatuan struktur dimensi ruang waktu. Di dalamnya, c mendefinisikan konversi antara materi dan energi[24] E=mc2, dan batas tercepat waktu tempuh materi dan energi tersebut. c juga merupakan kecepatan tempuh semua radiasi elektromagnetik dalam ruang kamar[28] dan diduga juga merupakan kecepatan gelombang gravitasi.[29][30] Dalam teori ini, sering digunakan satuan natural units di mana c=1, sehingga notasi c tidak lagi digunakan.

Source: http://id.wikipedia.org/wiki/Kecepatan_cahaya

Wednesday, December 22, 2010

Perihelion dan Aphelion Bumi Terhadap Matahari

Planet-planet di tata surya kita mengorbit Matahari. Orbit dari beberapa planet adalah lingkaran yang nyaris sempurna, tetapi yang lain tidak. Beberapa orbit yang berbentuk lebih seperti oval atau elips. Jika orbit sebuah planet adalah lingkaran, matahari berada pada titik pusat lingkaran itu. Jika, sebaliknya, orbit yang elips, matahari berada pada titik yang disebut "fokus" dari elips, yang tidak persis sama sebagai pusat.

Karena Matahari tidak di pusat orbit elips, planet bergerak lebih dekat ke arah dan lebih jauh dari Matahari seperti orbit. Tempat di mana planet terdekat dengan matahari disebut perihelion. Ketika planet ini terjauh dari matahari, itu pada aphelion. Kata-kata "aphelion" dan "perihelion" berasal dari bahasa Yunani. Dalam bahasa Yunani, "Helios" berarti Sun, "peri" berarti dekat, dan "apo" berarti jauh dari.

[caption id="" align="alignnone" width="400" caption="Perihelion dan Aphelion Bumi terhadap Matahari"][/caption]

Ketika Bumi berada di perihelion, sekitar 147 juta km (91 juta mil) dari Matahari. Ketika berada di aphelion, adalah 152 juta km (hampir 95 juta mil) dari Matahari. Bumi adalah sekitar 5 juta km (lebih dari 3 juta mil) lebih jauh dari Matahari pada aphelion dari pada perihelion!

Beberapa orang berpikir bahwa ini adalah mengapa kita memiliki musim, tetapi mereka salah. Mencapai bumi perihelion, pendekatan yang paling dekat dengan Matahari dan saat Anda mungkin berpikir itu harus hangat, pada bulan Januari - tengah musim dingin di belahan bumi utara! Perbedaan jarak bukan penyebab musim kita. Sebaliknya, musim disebabkan oleh kemiringan sumbu bumi.

Beberapa planet memiliki orbit yang membentang begitu jauh. Pluto, misalnya, lebih jauh dari Matahari di aphelion daripada di perihelion. Para astronom mengatakan bahwa orbit elips memiliki eksentrisitas tinggi, yang artinya adalah panjang dan kurus, tidak bulat seperti lingkaran. Asteroid, komet banyak, dan pesawat ruang angkasa beberapa juga mengelilingi Matahari dalam orbit elips. Mereka semua memiliki titik perihelion dan aphelion sepanjang orbitnya. Apa pun menyusul elips orbit bergerak tercepat di perihelion dan paling lambat di aphelion.

Jika suatu benda orbit sesuatu selain Matahari, kita tidak menggunakan istilah perihelion dan aphelion. Satelit yang mengorbit bumi (termasuk bulan!) Memiliki titik dekat disebut perigee dan apogee disebut titik jauh.

Tuesday, December 21, 2010

Penyebab Terjadinya Gerhana Matahari dan Bulan

Gerhana adalah fenomena astronomi yang terjadi ketika sebuah benda angkasa bergerak ke dalam bayangan sebuah benda angkasa lain. Secara umum ada 2 jenis gerhana yang sering kita saksikan yaitu gerhana matahari dan gerhana bulan.

Gerhana Matahari

Gerhana matahari terjadi ketika posisi bulan terletak di antara Bumi dan Matahari sehingga menutup sebagian atau seluruh cahaya Matahari. Walaupun Bulan lebih kecil, bayangan Bulan mampu melindungi cahaya matahari sepenuhnya karena Bulan yang berjarak rata-rata jarak 384.400 kilometer dari Bumi lebih dekat dibandingkan Matahari yang mempunyai jarak rata-rata 149.680.000 kilometer.

[caption id="" align="alignnone" width="250" caption="Gerhana matahari pada tanggal 29 Maret 2006."][/caption]

Gerhana matahari dapat dibagi menjadi tiga jenis yaitu: gerhana total, gerhana sebagian, dan gerhana cincin. Sebuah gerhana matahari dikatakan sebagai gerhana total apabila saat puncak gerhana, piringan Matahari ditutup sepenuhnya oleh piringan Bulan. Saat itu, piringan Bulan sama besar atau lebih besar dari piringan Matahari. Ukuran piringan Matahari dan piringan Bulan sendiri berubah-ubah tergantung pada masing-masing jarak Bumi-Bulan dan Bumi-Matahari.

Gerhana sebagian terjadi apabila piringan Bulan (saat puncak gerhana) hanya menutup sebagian dari piringan Matahari. Pada gerhana ini, selalu ada bagian dari piringan Matahari yang tidak tertutup oleh piringan Bulan.

Gerhana cincin terjadi apabila piringan Bulan (saat puncak gerhana) hanya menutup sebagian dari piringan Matahari. Gerhana jenis ini terjadi bila ukuran piringan Bulan lebih kecil dari piringan Matahari. Sehingga ketika piringan Bulan berada di depan piringan Matahari, tidak seluruh piringan Matahari akan tertutup oleh piringan Bulan. Bagian piringan Matahari yang tidak tertutup oleh piringan Bulan, berada di sekeliling piringan Bulan dan terlihat seperti cincin yang bercahaya.

Gerhana matahari tidak dapat berlangsung melebihi 7 menit 40 detik. Ketika gerhana matahari, orang dilarang melihat ke arah Matahari dengan mata telanjang karena hal ini dapat merusakkan mata secara permanen dan mengakibatkan kebutaan.

Gerhana Bulan

[caption id="" align="alignnone" width="685" caption="Diagram gerhana bulan: Bayangan bumi yang menutupi bulan"][/caption]

Gerhana bulan terjadi saat sebagian atau keseluruhan penampang bulan tertutup oleh bayangan bumi. Itu terjadi bila bumi berada di antara matahari dan bulan pada satu garis lurus yang sama, sehingga sinar matahari tidak dapat mencapai bulan karena terhalangi oleh bumi.

Dengan penjelasan lain, gerhana bulan muncul bila bulan sedang beroposisi dengan matahari. Tetapi karena kemiringan bidang orbit bulan terhadap bidang ekliptika, maka tidak setiap oposisi bulan dengan matahari akan mengakibatkan terjadinya gerhana bulan. Perpotongan bidang orbit bulan dengan bidang ekliptika akan memunculkan 2 buah titik potong yang disebut node, yaitu titik di mana bulan memotong bidang ekliptika. Gerhana bulan ini akan terjadi saat bulan beroposisi pada node tersebut. Bulan membutuhkan waktu 29,53 hari untuk bergerak dari satu titik oposisi ke titik oposisi lainnya. Maka seharusnya, jika terjadi gerhana bulan, akan diikuti dengan gerhana matahari karena kedua node tersebut terletak pada garis yang menghubungkan antara matahari dengan bumi.

Sebenarnya, pada peristiwa gerhana bulan, seringkali bulan masih dapat terlihat. Ini dikarenakan masih adanya sinar matahari yang dibelokkan ke arah bulan oleh atmosfer bumi. Dan kebanyakan sinar yang dibelokkan ini memiliki spektrum cahaya merah. Itulah sebabnya pada saat gerhana bulan, bulan akan tampak berwarna gelap, bisa berwarna merah tembaga, jingga, ataupun coklat.

Gerhana bulan dapat diamati dengan mata telanjang dan tidak berbahaya sama sekali.

Jenis-jenis gerhana bulan:
  • Gerhana bulan total

Pada gerhana ini, bulan akan tepat berada pada daerah umbra.

  • Gerhana bulan sebagian

Pada gerhana ini, tidak seluruh bagian bulan terhalangi dari matahari oleh bumi. Sedangkan sebagian permukaan bulan yang lain berada di daerah penumbra. Sehingga masih ada sebagian sinar matahari yang sampai ke permukaan bulan.

  • Gerhana bulan penumbra

Pada gerhana ini, seluruh bagian bulan berada di bagian penumbra. Sehingga bulan masih dapat terlihat dengan warna yang suram.

Penelitian: Kehidupan Bumi Dimulai 3 Miliar Tahun Lalu

Secara dramatis, kehidupan di Bumi mulai muncul tiga miliar tahun silam. Kehidupan muncul ketika bentuk primitif mulai mampu memanfaatkan energi matahari. Kesimpulan ini dibuat oleh ilmuwan Massachusetts Institute of Technology (MIT) yang membuat ‘fosil genom’. Ilmuwan tersebut mengumpulkan 1.000 kunci gen yang ada hingga saat ini dan mengkalkulasi bagaimana mereka berevolusi dari masa lampau.

Genom kolektif semua kehidupan berkembang secara besar-besaran 2,8-3,3 miliar tahun silam. Selama ini, hanya 27% dari seluruh keluarga gen muncul menjadi makhluk hidup. Penyidik Eric Alm dan Lawrence David mengatakan gelombang besar itu terpicu munculnya proses biokimia yang disebut transpor elektron modern.

Fungsi utama biologis ini melibatkan pergerakan elektron dalam selaput sel. Hal ini penting bagi tanaman dan mikroba karena memungkinkan mereka memanen energi matahari melalui fotosintesis dan oksigen untuk bernapas.

Sekitar 500 juta tahun kemudian, perubahan besar ini diikuti fenomena yang dikenal sebagai Great Oxidation Event, peristiwa ketika atmosfer bumi semakin dibanjiri oksigen.

Great Oxidation Event merupakan pergantian spesies terbesar dalam sejarah Bumi, seiring kematian kehidupan primitif atau mikroba non-oksigen dan digantikan oleh makhluk yang lebih besar dan memiliki bentuk aerobik lebih pintar.

Source: http://teknologi.inilah.com/read/detail/1073852/studi-kehidupan-bumi-dimulai-3-miliar-tahun-lalu

10 Kondisi Ekstrim di Luar Angkasa

Sebagai manusia kita harus bersyukur karena kita telah hidup dan tinggal di planet bumi ini, sebuah planet yang relatif stabil baik dari sisi fisik maupun cuacanya. Berbeda dengan planet lain di tata surya yang memiliki banyak sekali kondisi ektrim yang mana manusia maupun makhluk hidup lain sulit atau bahkan tidak dapat hidup di sana. Berikut ini adalah beberapa badai/cuaca ektrim yang terjadi di beberapa objek di luar angkasa.

10.Serious Lightining(petir terparah)

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiecX4cvY7Mr6FVOgaqq3WFVRqOWy4YKJugyv1fkIkgmjPzNQX8Ud_ZmiOgLDaC-eRfqWwRcu_AgRxuhRcdJozcglPBVQTK4UTw4HgFhAY3OWg9UbZ_xfDsnVY5KBl4c8l4016kLEaK1s8/s320/saturn-lightning_wif.jpg

Pesawat ruang angkasa NASA Cassini telah melihat sebuah badai listrik lebih besar daripada badai listrik daratan Amerika Serikat di Saturnus, dengan kilatan petir yang 1.000 kali lebih kuat daripada di Bumi. Badai petir yang membentang 2.175 mil (3.500 kilometer) dari utara ke selatan dan memancarkan suara radio yang sama dengan yang dihasisilkan di bumi.

9.Hot Crush(panas penghancur)

http://www.icademyglobe.org/siteadmin/files/venus_pvo.jpg

Sesuai namanya, venus merupakan tempat terpanas di tata surya kita. dengan suhu sekitar 750 Kelvin dan memiliki tekanan 90 kali di bumi ini akan membuat setiap pengunjung akan hancur(crush). Ilmuwan menyebutkan bahwa hal ini terjadi karena adanya efek rumah kaca yang berlebihan dari awan sulfat yang menutupi langit-langit venus. maka jadilah efek rumah kaca yang besar dan menyebabkan hal ini.

8. Methane Moon ( Bulan Metana)

[caption id="" align="alignnone" width="362" caption="Struktur Titan, bulan planet Saturnus"][/caption]

[caption id="" align="alignnone" width="400" caption="Titan"][/caption]

Pesawat ruang angkasa Cassini Huygens menemukan bukti kuat diantara hujan deras metana cair yang terjadi di bulan nya saturnus "Titan" . dan mungkin di "air" yang ada di bulan adalah metana juga karena pada suhu dingin Titan (94 derajat Kelvin)-air pun akan dikurung seperti es.

7.Scarlet Rain(Hujan Merah)

http://www.sepiamutiny.com/sepia/images/RedRain1.jpg

Pada musim panas 2001, setidaknya 50 ton partikel merah jatuh di Kerala, India terus selama hampir dua bulan bersama hujan. Ternyata benda merah berkarat ini termasuk partikel dari badai debu dan sel-sel biologis yg berasal dari makhluk luar angkasa(bakteri sejenis itu mksdnya). Dalam edisi bulan April jurnal Astrophysics and Space Science, ilmuwan dari Mahatma Gandhi University melaporkan bahwa partikel memiliki penampilan sel-sel biologis, dapat bereproduksi di suhu mendesis, dan tidak memiliki kesamaan dengan partikel debu.

6.Planet Popsicle(planet es)

http://www.environmentpacificnews.com/news/uploads/1/pluto.jpg

Pluto yang sekarang tidak di anggap planet ke 9 dalam tata surya ini memiliki fakta bahwa sinar matahari yang di dapat plto di bandingkan bumi sekitar 1:1000 tahun dan menyebabkan planet ini terdiri dari es beku yang terdiri dari nitrogen,metana dan karbon dioksida dengan Suhu berkisar antara minus 387 hingga minus 369 Fahrenheit (40-50 derajat Kelvin).

5.windy world (dunia angin)

http://3.bp.blogspot.com/_h1ef60QyxYM/TJ-adp_yAuI/AAAAAAAABZc/fFe71nyK4hU/s640/neptune-430.jpg

Di Neptunus ditemukan gemuruh angin yang bertiup lebih banyak dan kuat daripada yang ada di Bumi, mencapai 1.500 mph (2.414 kph).Seiring dengan rotasi planet yang cepat (sekitar 16 jam) sehingga menyebabkan konveksi panas-dingin yang cepat juga lalu dapat mempengaruhi kecepatan angin dan menciptakan kecepatan yang melebihi kecepatan angin di bumi

4.Freeze Frame(rangka es)

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjpYmllqkqSvORFjT4ucyc8ld6KX2qgAw6wSMOG5mVb92G6FPG2augmMkhGNqxiNJlBY0CURRcTA0cf-WH6H2kWKVFSQMkuTUrS4dthxULJZFP0zqeltQ5rkDimdWGdp_DzHRs_jrWhSQ9Y/s320/URANUS~1.GIF

Suhu di Uranus bisa mencapai di bawah minus 300 derajat Fahrenheit (89 Kelvin). uranus memiliki rotasi 17 jam namun revolusi yang mencapai 84 tahun menyebabkan musim (ekstrim) akan lama berganti . Kadang-kadang, itu bisa begitu dingin sehingga gas metana di atmosfer mengembun menjadi metana kristal-awan.

3.Close Encounter (tabrakan badai terbesar)

http://ep.yimg.com/ca/I/spaceimages_2136_78184874

2 Bintik bulatan di planet jupiter diatas adalah badai yang sedang mengamuk di planet tersebut. dari ukuran badainya saja dapat kita ketahui. Yang besar dinamakan the great red spot Badai yang lebih dari dua kali lipat lebar Bumi dengan 350-mph ((563 kph) angin dan yang kecil (badai) di namakan red.Jr. Walaupun tidak sepenuhnya dipahami, para ilmuwan berpikir warna merah berkorelasi dengan intensitas badai-angin lalu membangkitkan senyawa kimia dari bawah awan dan mengangkat mereka ke tempat yang tinggi dtambah sianr ultraviolet sehingga menghasilkan rona bata.

2.Dust Buster (pelebur debu)

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiF0CsnpfY83ZP9BgUev70rt7XFZVhrxGFonAZma5y8CZLejq4zhIDxQR4B1KU2BDOnF6OEnYeIkRj1JGRgVEOEKhEGBYY2AEVxECUhhdVg_JxY9aBUwSh52oolUKYRc75ZJQ_2uE8P5b-M/s1600/Planet+Mars.jpg

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEj2xgBs8LQQ7xnr49ZfJKksWocjEKcoFTuDqRdlUekm8kTWtYUnfwCPCTHGjwSAFAHi1XtYMHf6_zQxEu5UmMDJbLkax18UmnrBUKyhghRx_XRsSYQFqDlAlf7ne-It09PJ6oeNxS5IxIY/s1600/dust-buster_wif.jpg

Planet Mars telah diketahui telah menghempaskan badai debu yang melanda seluruh belahan mars. Debu berwarna karat ini dapat tertiup dengan kecepatan 60-100 mph (97-161 kilometer) per jam, yang berlangsung selama berminggu-minggu ke bulan. Begitu dimulai, kabut tak tertembus ini dapat menyelimuti lebih dari separuh planet, meningkatkan suhu 30 derajat Celcius di belahan mars

1.Iron rain (hujan besi)

http://sman4pwt.files.wordpress.com/2010/10/10.jpg?w=300

Disebut "bintang gagal", planet brown dwarf ini adalah planet yang baru ditemukan ditata surya kita (salah satu dari 3 planet dwarf yang di beritakan telah ditemukan itu), warna cokelat menandakan bahwa planet ini memiliki unsur ferum(besi) yang tinggi. planet ini memiliki badai seperti yg ada di jupiter dan menghepaskan bsi" ke permukaan nya. brown dwarf ini semakin dingin dari waktu ke waktu, molekul gas mengembun menjadi cairan besi-besi awan dan hujan. Dengan pendinginan lebih lanjut, badai besar menyapu menjauh awan, membiarkan cahaya inframerah terang melarikan diri ke luar angkasa.

Thursday, December 16, 2010

Top 10 Misteri di Alam Semesta

Sangat banyak misteri alam semsta yang belum terpecahkan. Ada beberapa info yang didapat hanya setengah-setengah atau bahkan diantaranya adalah hanya hoax yang belum tentu kebenarannya. Ada beberapa hasil penelitian yang pernah diungkapkan ke publik tapi masih mengundang sejuta pertanyaan. berikut ini adalah 10 misteri alam semsta yang sampai saat ini belum terpecahkan.

Simulacrum in Eagle Nebula


Salah satu foto yang paling aneh yang pernah diambil dari luar angkasa yaitu Eagle Nebula. Foto itu sendiri seharusnya untuk menunjukkan kelahiran bintang dari awan gas. Namun, ketika foto itu ditampilkan di CNN, ratusan panggilan datang dari orang-orang melaporkan mereka bisa melihat wajah di awan. Bila warna foto itu disesuaikan, bentuk wajah manusia yang cukup besar tampaknya muncul dalam awan. Ilmuwan belum mampu menjelaskan fenomena ini

Dari mana galaksi berasal ?




Ilmu pengetahuan baru-baru ini hanya mampu menjelaskan di mana bintang-bintang dan planet berasal. Sekarang, para ilmuwan telah mengalihkan perhatian mereka ke misteri yang jauh lebih besar, dari mana galaksi datang? Apa yang diketahui adalah bahwa galaksi tidak tersebar secara acak di seluruh ruang, dan mereka ditemukan secara cluster (berkelompok), yang dikenal sebagai "super cluster". Para ilmuwan memiliki 2 teori yang menjelaskan tentang formasi galaksi. Pertama, gas yang tersisa dari ledakan besar berkumpul bersama untuk membentuk galaksi, di mana dimulai dan planet lahir. Kedua adalah bahwa gas dari ledakan besar yang diciptakan bintang-bintang dan planet-planet di seluruh alam semesta, dan mereka bermigrasi melalui gravitasi ke galaksi. Dan teori itu masih belum bisa diterima.

Bumi yang lain




Bintang, matahari, hanyalah salah satu dari triliun di alam semesta. Apakah tidak mungkin bahwa hanya salah satu planet yang mungkin memiliki hidup di dalamnya? Ini adalah kenyataan bahwa, sejak tahun 2000, ratusan ekstra solar planet telah ditemukan mengorbit bintang-bintang jauh. Beberapa di antaranya telah ditemukan dalam bentuk seperti, misalnya planet Gliese 581d, sebuah planet diyakini memiliki cairan air di permukaannya. Mungkinkah berisi kehidupan didalmnya? Mudah-mudahan dengan kemajuan teknologi dalam dekade berikutnya, kita akan segera tahu jawabannya. Sampai kemudian, hal itu tetap menjadi salah satu misteri terbesar luar angkasa

Alam semesta tak terbatas ?




Ini adalah salah satu argumen yang lebih kontroversial di luar sana. Teori adalah bahwa terdapat jumlah tak terbatas di alam semesta, masing-masing yang diatur oleh serangkaian hukum dan fisika. Banyak ilmuwan menolak argumen ini sebagai tidak lebih dari spekulasi, karena tidak ada bukti atau hukum matematika yang memungkinkan untuk keberadaan alam semesta yang lain. Namun demikian, penganut teori ini berpendapat bahwa ada seorang pun yang menyangkal itu hal yang aneh. Ini adalah salah satu misteri yang hanya dapat diatasi jika kita dapat melakukan perjalanan di sana, bagaimanapun, dengan perluasan alam semesta, maka manusia tidak akan pernah menemukan jawabannya.

Dark Matter




Teori Albert Enstnteint E = MC ^ 2 adalah mungkin teori yang paling terkenal abad ini. Namun, bila diterapkan di luar angkasa, sebuah kejanggalan terjadi. Ketika kita menggunakannya untuk menentukan seberapa banyak materi alam semesta seharusnya, kita menyadari bahwa kita hanya menemukan empat persen dari materi di alam semesta! Mana sisanya? Banyak yang percaya itu adalah dalam bentuk Dark Mater. Ilmuwan belum menunjukkan bukti meyakinkan bahwa Dark Mater pada kenyataannya tidak ada. Kenyataan bahwa kalian tidak dapat melihatnya, menyentuhnya, dan cahaya dan gelombang radio yang benar meskipun tidak terpengaruh membuat sangat sulit untuk dideteksi.

Hubungan bumi dan mars




Ketika berbicara tentang kehidupan di planet lain, beberapa orang mengatakan kita perlu pergi tidak lebih jauh dari tata surya kita sendiri. Mars selalu diperkirakan memiliki kehidupan oleh banyak teori konspirasi, mengatakan bahwa NASA sedang menutupi kejadian itu. Banyak foto juga dipertanyakan peradaban di Mars, seperti wajah di Mars, Piramida di Mars, dan foto dari apa yang tampak seperti sosok seekor kera duduk di atas sebuah batu di Mars. Sementara para ilmuwan telah keluar angkasa untuk membuktikan prasangka foto-foto ini, mereka juga mempercayai jika pernah ada samudra yang menutupi permukaan mars, sebelum Mars medan magnet menghilang. Apakah mungkin bahwa kehidupan memang pernah ada? Saat ini beberapa misi ke Mars diharapkan dapat menjawab pertanyaan ini.

Astronot NASA pernah melihat UFO ?




Astronot NASA adalah beberapa orang yang paling sangat terlatih dan orang-orang khusus di dunia. Sering kali, mereka adalah ilmuwan ahli yang dapat menjelaskan hampir semua hal. Jadi ketika mereka melihat sesuatu - mereka dapat menjelaskannya, kalian pasti akan mengangkat alis. Salah satu insiden yang paling terkenal terjadi pada siaran langsung di NBC pada tahun 1963. Mayor Gordon Cooper berada di akhir perjalanan solo 22 orbit mengelilingi bumi ketika ia berkata keluar dari salah satu jendela ia bisa melihat obejk hijau bercahya dengan sangat cepat mendekat. Objek kemudian membuat belokan tajam dan melesat pergi. Ia yakin ia tidak melihat itu dan radar pun tidak menankapnya. Sekembalinya ke bumi, pewawancara ingin bertanya kepadanya tentang objek, namun para pejabat NASA tidak akan mengizinkannya.

Lubang Putih




Albert Einstein salah satu prestasi terbesar adalah membuktikan, dengan matematika, keberadaan Black Hole. Dari kemajuan teknologi, kita sekarang telah dapat menemukan beberapa Black Hole, dan percaya satu berada di tengah-tengah galaksi kita sendiri . Sangat menakjubkan, bagaimanapun, Einstein juga membuktikan melalui persamaan; bahwa White Hole juga ada. Berlawanan dari Black Hole, White Hole diyakini spit out

atau membuang keluar. Jika ada salah satu "White Hole" yang ditemukan, hal itu mungkin membantu kita menjelaskan misteri lain yang tidak diketahui, seperti di mana materi yang membuat galaksi berasal.



Jejak peradaban di bulan




Dalam daftar ini kita telah membahas kemungkinan adanya kehidupan di planet yang jauh dan di yang dekat. Contohnya, planet paling dekat yang memiliki kehidupan yaitu Bulan? Teori konspirasi ini menyatakan bahwa memang ada bangunan kuno dan reruntuhan di bulan, namun pemerintah telah menyensor mereka dari masyarakat lain. Baru-baru ini, ilmuwan mengumumkan mereka yakin bahwa mereka telah menemukan air, mungkin dalam es atau bentuk cair, di bawah permukaan bulan. Untuk teori konspirasi, ini semua bukti yang mereka butuhkan, sementara kritikus menganggapnya sebagai "spekulasi konyol".

Dark Energy


Dark Energy adalah misteri terbesar di alam semesta ini, karena diyakini Dark EnergyDark Energi, yang memiliki efek berlawanan dengan gravitasi, mendorong hal-hal yang di sekitarnya terpisah. Perhitungan matematis telah menunjukkan bahwa, jika ada, itu membuat hingga 74% dari alam semesta kita, melebihi gravitasi, dan inilah mengapa alam semesta ini membentang keluar. Namun, kita masih tidak memiliki bukti konklusif, sehingga tetap menjadi misteri bagi kita. berda di sekitar kita, dan menjelaskan sementara tampaknya ada kenjanggalan dengan hukum gravitasi. Oleh hukum gravitasi, benda besar, seperti galaksi cluster, harus menarik satu sama lain, dan ada tarikan gravitasi harus menarik benda-benda lain. Namun, tidak demikian halnya, dan faktanya adalah cluster galaksi bergerak lebih jauh dan terpisah. Hal ini disebabkan oleh fakta bahwa alam semesta berkembang pada tingkat yang luar biasa. Untuk menjawab pertanyaan mengapa hal ini, para ilmuwan mengembangkan teori

Sebenarnya sangat banyak misteri di alam semsta yang belum diketahui, seperti bagaimana alam semsta ini tercipta, umur alam semesta, berapa luas alam semesta, jumlah bintang dan planet di alam semesta dan sebagainya. Tulisan di atas adalah sebagian kecil dari misteri tersebut. Hal itu disebabkan selain ukuran alam semsta yang suangat luas, teknologi manusia yang terbatas, dan sangat kompleksnya alam semsta itu. Seiring dengan perjalanan waktu, kita akan memahaminya sedikit demi sedikit.

Penjelasan Tentang Teori Fisika Kuantum

Teori kuantum Wheeler sebenarnya sudah muncul sejak pasca Perang Dunia II, digagas oleh fisikawan John A. Wheeler. Kalo kita bicara tentang teori kuantum, harus kita pahami bahwa alam semesta (maksudnya alam partikel) bersifat fluktuatif, tidak ada yang pasti, karena dikontrol oleh asas ketidakpastian Heisenberg sehingga hanya probabilitas posisi dan momentumnya saja yang kita ketahui.

Inilah yang dibenci Einstein dari teori kuantum, meski ia dikenal sebagai salah satu perintisnya yang utama (dengan Satyendrenath Bose di India, terpisah separuh bola Bumi dengan Einstein di Princeton, mereka saling surat menyurat dalam rangka menyusun sebuah statistik kuantum, kini dikenal sebagai statistik Bose-Einstein, untuk mengatur perilaku partikel2 berspin bulat yang berperanan membawa gaya2 fundamental di alam semesta/boson, dan mereka baru bertemu muka setelah tulisannya siap diterbitkan). Sampai2 muncul kata2nya yang terkenal : " Tuhan tidak melempar dadu ".


Materi (baca : partikel) dalam mekanika kuantum memang tidak riil, karena ia selalu memiliki sifat gelombang akibat gerakannya, sementara di jagat raya ini tidak ada partikel yang diam mutlak. Gambarannya begini, kita lihat seseorang yang sedang duduk. Meski secara kasatmata ia nampak diam, namun menurut mekanika kuantum sebenarnya tidaklah demikian. Orang itu jelas tersusun oleh partikel2 seperti elektron, proton dan neutron ditambah meson (yang saling bertukaran antar neutron dalam menciptakan gaya inti) yang semuanya selalu bergerak. Sementara menurut mekanika kuantum, partikel yang bergerak selalu menghasilkan gelombang de Broglie sehingga status partikel itu menjadi bias, di satu saat ia muncul sebagai " butiran " (baca : materi), sementara di saat yang lain ia muncul sebagai gelombang. Sehingga partikel2 penyusun orang yang sedang duduk itu sebenarnya selalu berganti-ganti sifat dari materi ke gelombang dan sebaliknya secara terus menerus.




Bagi mekanika kuantum, materi dan gelombang adalah dua sisi dari sekeping uang logam yang sama. Hal ini sebenarnya tidak aneh, karena jika kita mempelajari relativitas umum, kita juga akan menemukan kesimpulan bahwa materi dan energi sebenarnya merupakan dua bentuk berbeda dari sesuatu yang sama.Dengan menggabungkan mekanika kuantum dan relativitas umum, kita bisa mendapatkan kesimpulan bahwa materi merupakan bentuk energi yang terkurung dalam ruang-waktu yang melengkung.




Aneh ? Masih lebih aneh teori string. Menurut teori ini, partikel2 yang beragam itu (mulai dari baryon, meson hingga lepton dan boson2 pembawa gaya) tidaklah berwujud " butiran " (mirip kelereng) sebagaimana gambaran yang ada selama ini, namun berbentuk string (dawai, seperti senar gitar) yang identik satu sama lain. Yang membedakan satu partikel dengan partikel lainnya adalah frekuensi getaran dawai masing2. Jadi, jika anda melihat orang duduk tadi, silahkan dibayangkan sendiri bahwa orang tersebut sebenarnya tersusun oleh trilyunan dawai yang selalu bergetar dengan frekuensinya masing. Meski teorinya cukup " aneh " namun inilah teori fisika yang berkembang pesat dalam 20 tahun terakhir ini dan dalam konferensi internasional tentang relativitas umum dan gravitasi 2003 disebutkan teori string inilah yang menjadi kandidat terkuat bagi Theory of Everything (TOE), teori yang mempersatukan mekanika kuantum dan relativitas umum.




1. Kalo semua makhluk hidup meninggal, Bumi dan alam semesta tidak akan lenyap, masih tetap ada. Karena jika kita tinjau dari sudut pandang relativitas, meninggalnya makhluk hidup tidak mengakibatkan gangguan pada ruang-waktu. Kita ambil contoh pada peristiwa " The Great Dying " 250 juta tahun silam, dimana 96 % populasi makhluk hidup musnah akibat tumbukan asteroid raksasa yang membentuk basin Bedout High (kini ada di lepas pantai sebelah barat laut Australia), tidak ada gangguan pada ruang-waktu dan Bumi tetap utuh hingga kini.




Alam semesta memang bisa lenyap, jika terjadi gangguan besar pada ruang-waktu, sehingga ruang-waktu sobek/terbelah. Peristiwa ini diperkirakan akan terjadi dalam 20 milyar tahun mendatang karena pemuaian alam semesta telah demikian cepat hingga gravitasi tidak sanggup lagi menahannya dan ruang-waktu telah demikian merenggang hingga daya tahannya terlampaui. Karena ruang-waktu bersifat aktif dan menjadi bagian inheren dari seluruh materi dan energi, maka sobeknya ruang-waktu membuat materi dan energi kehilangan kestabilannya selama ini dan akan musnah. Kemusnahan yang sempurna, mulai dari galaksi hingga lepton. Cukup mengesankan bahwa mekanika kuantum juga meramalkan proton2 di alam semesta akan meluruh (yang berarti kehancuran materi yang disusun oleh proton) namun dalam tempo yang jauh lebih lama dibanding saat sobeknya ruang-waktu.




2. Fisika kuantum secara umum memang membuat manusia lebih bisa memahami alam semesta ini bekerja di dunia partikel dan sekaligus mengatur perilakunya. Secara praktis kegunaannya sangat banyak, mulai dari sel surya, komputer yang kita gunakan hingga ke teknologi laser, baik yang digunakan dalam persenjataan maupun yang ada dalam CD-ROM kita.




3. Lubang hitam atomik, atau lubang hitam mini (dalam bahasa Wheeler) adalah jenis lubang hitam berukuran mini dengan massa jauh dibawah massa minimal bagi pembentukan lubang hitam 'klasik'. Lubang hitam mini bisa terbentuk oleh tekanan sangat besar dalam waktu teramat singkat di suatu titik. Lubang hitam mini bisa disintesa oleh manusia, teorinya. John Wheeler pernah menghitung, jika seluruh Deterium yang ada di perairan Bumi kita diekstrak dan dibentuk menjadi sebuah bom Hidrogen maharaksasa untuk kemudian diledakkan, maka tekanan ekstrabesar di pusat ledakan akan menghasilkan sebuah lubang hitam mini (tentu saja, persoalannya tinggal apakah Bumi ini masih ada dan masih adakah manusia yang tersisa pasca ledakan itu untuk menyaksikan lubang hitam mini ini ?). Di alam semesta, lubang hitam mini diperkirakan terbentuk pada saat big bang dan hingga kini masih cukup banyak yang tersisa dan bergentayangan ke mana2. Meskipun mini, lubang hitam ini jangan dianggap enteng. Sebuah lubang hitam yang bergaris tengah 3 cm (alias sedikit lebih besar dari kelereng) memiliki massa yang sama dengan Bumi kita. Terjadinya ledakan hebat di atas Tunguska pada 30 Juni 1908, oleh salah satu analisis, diperkirakan ditimbulkan oleh masuknya lubang hitam mini ke Bumi, mengingat hingga kini di lokasi ledakan tidak ditemukan satu pun meteorit yang semula diduga menjadi penyebabnya.




Lubang hitam astronomik, alias lubang hitam klasik, adalah lubang hitam yang terbentuk sebagai hasil akhir proses evolusi bintang2 massif, seperti yang diramalkan Chandrasekhar dengan mekanika kuantum dan Oppenheimer dengan relativitas umum. Hanya bintang2 dengan massa > 3 kali massa matahari yang sanggup membentuk lubang hitam, karena bintang2 inilah yang takkan sanggup melawan gravitasinya sendiri begitu semua Hidrogen-nya (dan Helium-nya) habis terbakar dalam fusi sehingga akan terus mengerut menjadi obyek yang sangat kecil, yang tersusun oleh partikel2 paling sederhana (kuark dan lepton), hingga membuat ruang-waktu disekelilingnya melengkung tak terhingga membentuk asimtot.




Bintang seperti Matahari tidak akan berevolusi menjadi lubang hitam, karena begitu Hidrogen dan Heliumnya habis, gravitasi memang mulai membuatnya mengerut namun pengerutan ini masih bisa ditahan oleh gaya tolak-menolak antar elektron yang kini telah berdesakan dengan demikian rapat, seperti keadaan elektron2 pada sebatang besi, sehingga energi Fermi-nya cukup besar untuk mencegah pengerutan lebih lanjut. Terbentuklah bintang cebol putih yang densitasnya hampir sama dengan besi. Kelak jika Matahari berevolusi menjadi cebol putih, ia akan mengerut menjadi seukuran Mars saja. Sementara bintang dengan massa antara 1,4 dan 3 kali massa Matahari akan terus melanjutkan pengerutannya sampai elektron2nya kian terdesak hebat hingga energi Fermi-nya melampaui energi ambang reaksi antara proton dan elektron (p + e --> n). Terbentuklah bintang neutron, yang densitasnya hampir sama dengan densitas inti2 atom. Seandainya Matahari bisa menjadi bintang neutron, diameternya hanya 10 km.




4. Tachyon adalah segala macam partikel hipotetik yang memiliki kecepatan superluminal (lebih cepat dari cahaya dalam ruang vakum) sehingga massa (diam)-nya imajiner namun energi dan momentumnya riil. Memang, berdasarkan relativitas khusus, jika kita mempercepat sebuah partikel hingga mencapai kecepatan cahaya, maka massa relativistiknya akan menjadi tak terhingga dan hal itu tidaklah mungkin terjadi. Namun jika kita mengganti massa diam partikel itu dengan massa imajiner, kita akan mendapatkan pada kecepatan di atas kecepatan cahaya, partikel ini justru memiliki massa relativistik yang riil (ingat bahwa bilangan imajiner murni dibagi dengan bilangan imajiner murni yang lain akan menghasilkan bilangan riil). Bila tachyon bergerak di bawah kecepatan cahaya, massa relativistiknya menjadi imajiner sehingga tachyon tidak akan lebih lambat dari cahaya. Relativitas khusus juga menunjukkan, energi kinetik tachyon akan menurun bila kecepatannya bertambah dan akan meningkat bila kecepatannya berkurang. Sifat semacam ini sangat bertolak belakang dengan sifat2 partikel yang kita kenal, yang memiliki massa diam riil.




Relativitas umum memungkinkan munculnya partikel superliminal semacam ini, asalkan ia berada sangat jauh dari pengamat. Namun menurut mekanika kuantum, keberadaan tachyon justru akan menyalahi salah satu prinsip fundamental fisika teori : kausalitas. Interaksi tachyon dengan partikel2 bermassa diam riil akan menghasilkan keadaan tercampur antara masa lalu dan masa depan pada garis dunia dalam pasangan tersebut.




Sampai saat ini eksistensi tachyon memang belum ditemukan. Memang ada laporan tentang teramatinya partikel superluminal dalam guyuran sinar kosmik pada tahun 1973 oleh Philip Crough dan Robert Clay, yang sekaligus memunculkan dugaan adanya tachyon bermassa diam riil. Namun pengamatan2 berikutnya tidak berhasil mendeteksi partikel tersebut. Meski begitu konsep tachyon kini telah diterapkan dalam berbagai teori fisika, satu diantaranya adalah teori string. Dalam teori string tachyon diperkenankan eksis dengan frekuensi getar tertentu. Pada konferensi internasional tentang relativitas umum dan gravitasi 2003, salah satu sifat aneh tachyon mulai bisa diterima oleh para fisikawan masa kini, yakni bahwa dalam sebuah lubang hitam, materi yang tersedot masuk ke dalamnya tidak akan lenyap, namun mengalami keadaan tercampur antara masa lalu dan masa depannya, dengan fluks informasi kuantum dijamin utuh.

Source: http://www.mail-archive.com/fisika_indonesia@yahoogroups.com/msg01760.html

Wednesday, December 15, 2010

Perbedaan Kutub Utara dan Kutub Selatan Bumi

Sebagian di antara Anda pasti sudah tahu bahwa penguin hanya ditemukan di Kutub Selatan. Jangan harap bertemu burung yang kelihatan imut-imut itu di kutub utara. Meski serupa, sama-sama daratan di ujung planet Bumi yang didominasi es, kutub utara dan kutub selatan menyimpan banyak perbedaan. Penguin hanya salah satu contoh perbedaan saja.

Wilayah es Arktik di kutub utara pada dasarnya merupakan lautan beku yang dikelilingi daratan yang sering disebut lingkaran Arktik (Arctic Circle). Sebaliknya, Antartika di kutub selatan adalah daratan benua dengan wilayah pegunungan dan danau berselimut es yang dikelilingi lautan.

Benua Antartika mengandung hampir 90 persen es di seluruh dunia. Jika dicairkan, seluruh es Antartika cukup untuk memenuhi tiga perempat kebutuhan air minum di seluruh dunia. Maka jangan heran kalau Pangeran Mohammed Al Faisal dari Saudi Arabia pernah berencana mengangkut 100 juta ton es dari Antartika ke negaranya.

[caption id="" align="alignright" width="256" caption="Benua Antartika"][/caption]

Benua Antartika jauh lebih dingin daripada Arktik sehingga bahkan terdapat lapisan es di sana yang tidak pernah meleleh sepanjang sejarah. Temperatur rata-ratanya -49 derajat Celcius. Suhu terdingin pernah tercatat pada 21 Juli 1983 sebesar -89,6 derajat Celcius di Stasiun Vostok, dekat kutub geomagnetik selatan. Sementara Arktik memiliki temperatur rata-rata lebih tinggi sekitar -34 derajat Celcius.

Karena suhu yang lebih hangat ini, terbentuknya lubang ozon di atas  kutub utara tidak separah kutub selatan. Sebab, suhu yang lebih hangat menyebabkan pembentukan awan stratosfer yang merusak lapisan ozon lebih sedikit. Meski demikian, lapisan stratosfer di atas kutub utara mengalami pendinginan dari tahun ke tahun sehingga lubang ozon semakin besar. Mungkin tak akan sebasar lubang ozon di Antartika yang mencapai luas benua Eropa.

Daratan es yang didominasi lapisan es tipis di Arktik lebih mudah retak saat musim panas tiba. Bahkan, laporan terakhir menyebutkan, ratakan es telah melanda seluruh bagian Arktik saat tiba musim panas. Di Antartika retakan lapisan es melanda wilayah-wilayah tepian saja namun sekali lepas, pulau es yang mengapung bisa berlayar dari Antartika sampai ke Selandia Baru.

Sampai saat ini, wilayah Kutub Utara masih menjadi rebutan di antara negara-negara adikuasa. Russia sudah buru-buru mengklaim kekuasaannya di kutub utara dengan menancapkan bendera di dasar perairannya tahun lalu. Russia sudah menyipakan pengeboran gas di Lomonosov Ridge, barisan pegunungan bawah laut pada kedalaman 1920 meter untuk memperoleh 10 miliar ton gas.

Tetapi, AS juga tak mau kalah dengan mengirim kapal pemecah es Coast Guard untuk memetakan kembali batas wilayahnya di Alaska sebelum lapisan es di sana terus menyusut karena pemanasan global.  Badan Survei Geologi AS memperkirakan terdapat kandungan minyak di bawah Arktik sampai seperempat kandungan minyak dunia.

Meski Kutub Selatan diperkirakan juga menyimpan minyak terutama di sekitar Laut Ross, kemungkinan ditambang saat ini sangat kecil. Antartika telah mendapat perlindungan sesuai Traktat Antartika yang melarang siapapun melakukan segala bentuk eksplorasi minyak dan menjadikan Antartika kawasan damai serta riset bersama.

Sepanjang sejarah, Antartika memang tidak pernah dikuasai siapapun dan tidak ada penduduk asli di sana. Kontras sekali dengan wilayah lingkaran Arktik yang terdapat beberapa kota berpenduduk seperti Barrow di Alaska, Tromso, Norwegia, serta Muramansk dan Salekhaard, Russia. Di kutub utaralah orang-orang Eskimo bermukim.

Selain itu juga, hanya di Arktik saja beruang kutub bisa ditemukan secara alami. Mungkin ini juga alasan paling kuat mengapa penguin yang hanya ditemukan di kutub selatan tidak pernah menggunakan sayapnya untuk terbang. Hidup di wilayah kekuasaan masing-masing, penguin dan beruang kutub sama-sama makan ikan dan menempati puncak rantai makanan.

[caption id="" align="alignnone" width="329" caption="Kutub Utara"][/caption]

[caption id="" align="alignnone" width="569" caption="Kutub Utara"][/caption]

[caption id="" align="alignnone" width="684" caption="Kutub Selatan"][/caption]

http://www.4x4offroads.com/image-files/south-pole-world-record-1.jpg

[caption id="" align="alignnone" width="638" caption="Kutub Selatan"][/caption]


Loading
Posisi Wahana New Horizon Menuju Pluto